

22

www.njesr.com

NJESR/October-2023/Volume-5/Issue-10 E-ISSN-2582-5836

DOI-10.53571/NJESR.2023.5.10.22-34

Electronic Path For Apache Hadoop In Cloud Computing: An Introduction

Patel Ram Suthar

Associate Professor (Physics)

 Dr. Bhimrao Ambedkar Govt. College

Sriganganagar, Rajasthan, India

Email: prsuthara@gmail.com
(Received:25September2023/Revised:29September2023/Accepted:20October2023/Published:29October2023)

Abstract

Apache Hadoop is a free, open-source framework designed for the distributed storage and

processing of large data sets across computer clusters using straightforward programming

models. Doug Cutting and Mike Cafarella developed Hadoop in 2005, drawing inspiration

from Google’s MapReduce and Google File System (GFS) papers. Hadoop is architecturally

designed to scale from a single server to thousands of machines, with each machine offering

local computation and storage capabilities. This design allows for significant flexibility and

efficiency in managing and processing vast amounts of data. The MapReduce function in

Hadoop consists of two primary phases: the Map phase and the Reduce phase. In the Map

phase, the task involves splitting the data and then mapping it, essentially organizing and

preparing the data for processing. During the Reduce phase, the tasks involve shuffling the

mapped data and then reducing it, which means aggregating or summarizing the data to

derive meaningful insights or results. Hadoop’s versatility allows it to run MapReduce

programs in various programming languages, including Java, Ruby, Python, and C++. This

flexibility makes it accessible for a wide range of developers with different coding

backgrounds. Hadoop’s strength lies in its ability to store and process huge amounts of any

type of data quickly, its scalability, cost-effectiveness, flexibility, and a robust ecosystem.

These qualities make it a cornerstone for organizations dealing with big data analytics. While

Hadoop is highly effective for certain types of big data applications, it’s not a one-size-fits-all

solution. Understanding its limitations is key to determining where it fits within an

organization’s data strategy.

Keywords: HDFS, GFS, MapReduce, Map phase, YARN.

Introduction

Hadoop isn’t an acronym and therefore doesn’t have a full form. This name was chosen by

one of its inventors, Doug Cutting, and has a rather straightforward, personal origin. It was

actually the name of his young son’s yellow toy elephant. Originally, Hadoop was developed

as an open-source project to realize Google’s MapReduce concept. It has since grown into a

comprehensive framework for distributed storage and processing, capable of managing

mailto:prsuthara@gmail.com

23

www.njesr.com

enormous data sets across computer clusters. As a key player in the big data field, Hadoop is

renowned for this capability. However, it’s important to note that the name ‘Hadoop’ itself is

not indicative of any specific technology or concept and doesn’t stand for anything in

technical terms.

Hadoop’s genesis can be traced back to the nascent stages of the World Wide Web. During a

period when the Web was expanding from millions to billions of pages, the task of

conducting searches and delivering search results emerged as a significant challenge. This led

startups such as Google, Yahoo, and AltaVista to develop frameworks aimed at automating

the process of generating search results. Apache Hadoop represents a free, open-source

framework engineered for the distributed storage and processing of substantial data sets

across clustered computer systems, utilizing straightforward programming models.

Conceived by Doug Cutting and Mike Cafarella in 2005, Hadoop’s development was inspired

by Google’s MapReduce and Google File System (GFS) papers. Architecturally, Hadoop is

designed to scale from single servers to thousands of machines, each providing local

computation and storage. This scalable design is instrumental in affording remarkable

flexibility and efficiency in the management and processing of extensive data volumes.

Hadoop’s versatility is evident in its compatibility with various programming languages,

including Java, Ruby, Python, and C++, for running MapReduce programs. This adaptability

renders it accessible to a broad spectrum of developers with diverse coding proficiencies.

The strengths of Hadoop are manifold, encompassing its capacity for rapid storage and

processing of massive volumes of diverse data types, scalability, cost-effectiveness,

flexibility, and a robust ecosystem. These attributes establish it as a fundamental component

for organizations engaged in big data analytics. Organizations frequently opt for deploying

Hadoop clusters on public or hybrid cloud infrastructures as opposed to on-premises

hardware. This preference is primarily driven by the desire for enhanced flexibility, improved

availability, and better control over costs. Numerous cloud service providers now furnish

fully managed Hadoop services. Such preconfigured, cloud-first Hadoop solutions

significantly streamline operations. However, Hadoop’s applicability is not universally

optimal for all types of big data applications. Recognizing its limitations is crucial in

ascertaining its role within an organization’s broader data strategy. The core components of

Hadoop are- Hadoop Distributed File System (HDFS), MapReduce, YARN, Hadoop

Common, Hadoop Ozone, and some other Ecosystem Components.

Hadoop

24

www.njesr.com

MapReduce HDFS Hadoop

Common
YARN Hadoop

Ozone

1.1 Hadoop Distributed File System (HDFS)

The Hadoop Distributed File System (HDFS) stands as a pivotal element of Apache Hadoop,

meticulously crafted to store vast volumes of data with high reliability and to facilitate the

streaming of these data sets to user applications at substantial bandwidths. A comprehensive

examination of HDFS reveals the following aspects:

1.1.1 Distributed Storage

HDFS is founded on the principle that the optimal approach to data processing involves a

write-once, read-many-times pattern. This framework facilitates the storage of data across a

dispersed network of nodes within a Hadoop cluster, ensuring both reliable and highly

scalable storage capabilities.

1.1.2 Blocks Structured File System

In HDFS, files are segmented into blocks, usually 128 MB or 256 MB by default, though this

size is adjustable. These blocks are then evenly distributed across the nodes of the cluster.

This methodology of block-based distribution enhances efficient storage management and

facilitates rapid data processing.

1.1.3 Architecture

HDFS operates on a master/slave architecture. The master node, termed the NameNode,

oversees the file system namespace and controls client access to files. Meanwhile, the slave

nodes, known as DataNodes, are tasked with the storage of the actual data.

1.1.4 Data Replication

HDFS employs a strategy of replicating data across various DataNodes, a measure designed

to guarantee fault tolerance. Data blocks are duplicated and dispersed across multiple cluster

nodes, with a standard replication factor of three, though this can be adjusted as needed. This

approach significantly bolsters data reliability and availability, ensuring that even in the event

of a DataNode failure, the data is still accessible from other nodes in the system.

1.1.5 Scalability

The architecture of the system is meticulously crafted to efficiently manage and scale up to

thousands of nodes, with each node contributing to the storage of a segment of the file

system’s data. This scalability feature is central to HDFS’s ability to process and store

exceedingly large data sets with high efficiency. The scalability of HDFS does have some

limitations, particularly in the management capabilities of the NameNode. As the size of the

cluster grows, the NameNode’s memory and processing requirements increase because it

must manage the metadata for a larger number of files and blocks.

25

www.njesr.com

1.1.6 High Throughput

HDFS is engineered to deliver high data throughput, a feature that makes it particularly adept

at handling applications involving large data sets where substantial read and write operations

are frequent.

1.1.7 Data Locality Optimization

A distinctive characteristic of HDFS is its focus on data locality, prioritizing the movement of

processing to where the data resides, rather than transferring data to the processing location.

This strategy significantly reduces network congestion and enhances the total throughput of

the system.

1.1.8 Fault Tolerance

HDFS, by default, generates multiple copies of data blocks, typically creating three replicas,

and distributes them across different nodes. This redundancy is a key safeguard against data

loss due to hardware failures.

1.1.9 Write-Once-Read-Many Model

HDFS is tailored for handling large files, adhering to a write-once-read-many access model.

This design makes it exceptionally suitable for applications dealing with substantial data sets

that require minimal updates.

1.1.10 Accessibility

Although primarily engineered for high-throughput, batch-processing tasks, HDFS also offers

accessibility via more conventional interfaces such as HTTP. This feature extends its usability

to a wider range of applications beyond its core batch-processing capabilities.

1.1.11 Integration with MapReduce

HDFS is intricately designed to integrate with MapReduce, a software framework that

facilitates the parallel processing of substantial data volumes across a Hadoop cluster. This

integration capitalizes on the data locality aspect of HDFS, enhancing the speed and

efficiency of data processing. In summary, HDFS stands as a robust, scalable, and efficient

file system, forming a crucial component of the Apache Hadoop ecosystem. Its design and

functionality make it exceptionally well-suited for the storage and management of large-scale

data sets within a distributed computing environment. Hadoop’s functionality is

fundamentally anchored by two core components: the Hadoop Distributed File System

(HDFS) and MapReduce. Both play critical roles in its overall operation and efficiency.

1.2 MapReduce

MapReduce is indeed a pivotal component of the Apache Hadoop software framework,

representing both a programming model and its corresponding implementation. It is designed

for processing and generating large data sets using a parallel, distributed algorithm across a

cluster. Key aspects of MapReduce include:

26

www.njesr.com

1.2.1 Programming Model

MapReduce operates on two fundamental user-defined functions: ‘Map’ and ‘Reduce’.

Hadoop users can develop applications by implementing these two essential functions,

tailoring them to their specific data processing needs. The programming model in Hadoop

Distributed File System (HDFS) is closely tied to the overall architecture of Hadoop,

particularly its integration with MapReduce, which is the native processing framework of

Hadoop.

1.2.2 Map Function

The Map function in MapReduce is designed to handle input data formatted as key-value

pairs. It functions by reading data from a source, such as HDFS, and then processes this data

to generate a collection of intermediate key-value pairs. To facilitate parallel processing,

these Map tasks are allocated across various nodes within the cluster.

1.2.3 Reduce Function

The Reduce function in MapReduce acts on the intermediate key-value pairs outputted by the

Map function. It aggregates these data tuples based on their keys, processing these grouped

tuples to yield a more condensed set of tuples as its final output.

1.2.4 Fault Tolerance

MapReduce is adeptly engineered to manage failures at the application layer, ensuring

reliable processing of extensive data sets across a sizable cluster of commodity servers. This

resilience is maintained even in scenarios where individual nodes within the cluster

experience failures.

1.2.5 Parallel Processing

MapReduce is inherently scalable due to its ability to process data in parallel across a cluster.

The framework efficiently breaks down the job into smaller tasks, which are then executed

concurrently on various nodes within the cluster. This parallel execution significantly

enhances the processing capacity and speed of the system.

1.2.6 Scalability

The MapReduce framework is architecturally designed to be highly scalable, capable of

expanding from a single server to a vast network of thousands of machines. Each of these

machines contributes to the network by offering localized computation and storage

capabilities, facilitating the framework’s capacity to handle increasingly large data sets and

complex computational tasks.

1.2.7 Data Locality Optimization

MapReduce emphasizes the principle of data locality, striving to position the processing as

near to the data source as possible. This approach significantly reduces network congestion

27

www.njesr.com

and, consequently, enhances the overall throughput of the system, making the data processing

more efficient.

1.2.8 Simplicity

MapReduce stands out for enabling the distributed processing of substantial data sets across

compute clusters, with its most striking feature being its simplicity. This design allows

developers to create applications based on the framework without requiring in-depth

knowledge of the complexities involved in parallel processing or fault tolerance mechanisms.

Essentially, MapReduce abstracts these intricate details, making it more accessible for

developers to leverage its powerful capabilities.

1.2.9 Use Cases

MapReduce is employed in a diverse range of applications, extending from basic tasks like

filtering and sorting to more intricate operations such as data analytics and pattern matching.

This versatility allows it to be a crucial tool in various contexts where processing and

analyzing large data sets are essential.

1.2.10 Integration with Hadoop Ecosystem

MapReduce, while a formidable tool for data processing, is frequently utilized in conjunction

with other components of the Hadoop ecosystem to enhance its capabilities. HDFS is often

paired with MapReduce for efficient data storage, YARN for effective resource management,

and additional tools like Hive and Pig. Hive facilitates data warehousing and querying, while

Pig offers high-level data processing functionalities. This integrated approach leverages the

strengths of each component, creating a comprehensive and robust environment for handling

big data challenges. MapReduce has established itself as a foundational pillar in the realms of

big data and distributed computing. It provides a reliable and efficient framework specifically

tailored for processing enormous datasets. This is achieved by distributing computational

tasks across large clusters of computers, thereby harnessing the collective processing power

to handle extensive data challenges effectively. This capability makes MapReduce a critical

component in the toolkit for managing and analyzing big data in various industries and

applications.

1.3 YARN (Yet another Resource Negotiator)

YARN, an acronym for Yet Another Resource Negotiator, represents a significant evolution in

Apache Hadoop’s capabilities, introduced in its 2.0 version. As the framework’s resource

management and job scheduling module, YARN fundamentally transforms Hadoop’s

efficiency, scalability, and flexibility. This innovation allows for more dynamic resource

allocation, thereby optimizing the management of the Hadoop cluster’s resources. Here are

some essential components of YARN:

28

www.njesr.com

1.3.1 Resource Management

YARN plays a crucial role in the Hadoop ecosystem by managing and allocating system

resources, such as CPU and memory, among the various applications executing within the

Hadoop cluster. It effectively monitors and balances the resource consumption and

requirements across all active applications, ensuring optimal utilization and efficiency. This

resource management capability is key to maintaining the performance and stability of the

Hadoop cluster, especially when handling multiple, resource-intensive tasks simultaneously.

1.3.2 Decoupling Job Scheduling and Resource Management

In Hadoop’s earlier iterations, the MapReduce framework was tasked with both resource

management and job scheduling. This conflation of roles often led to less efficient and

flexible operations. However, with the introduction of YARN (Yet Another Resource

Negotiator) in later versions, there was a significant architectural shift. YARN took over the

responsibilities of resource management and job scheduling, effectively decoupling these

functions from the MapReduce framework. This separation greatly enhanced the efficiency

and flexibility of Hadoop, allowing for more effective utilization of resources and more

adaptable job scheduling, independent of the MapReduce paradigm.

1.3.3 Architecture

The Architecture of YARN encompasses a range of critical elements, RM, NM, and AM, each

contributing to its overall functionality.

1.3.3.1 ResourceManager (RM)

In the Apache Hadoop YARN architecture, the Resource Manager (RM) functions as the

master daemon, overseeing resource allocation within the cluster. The RM is composed of

two principal components: the Scheduler, responsible for allocating resources to various

running applications, and the ApplicationsManager, which orchestrates the application

lifecycle and manages the execution of application-specific tasks.

1.3.3.1.1 Scheduler

In the YARN framework of Apache Hadoop, the Scheduler’s primary role is to allocate

resources to the various applications running within the cluster. However, it is important to

note that the Scheduler does not engage in monitoring or tracking the execution status of

these applications. This task is managed separately, ensuring a more streamlined and efficient

distribution of responsibilities within the YARN architecture.

1.3.3.1.2 ApplicationsManager

The ApplicationsManager component within YARN is tasked with overseeing the entire

lifecycle of user applications, from initiation to completion, as well as managing their

29

www.njesr.com

scheduling. This integral part of YARN ensures that applications are efficiently queued,

scheduled, and executed within the Hadoop ecosystem.

1.3.3.2 Node Manager (NM)

Functioning as a dedicated sentinel on each node in the Hadoop cluster, the NodeManager

rigorously monitors and documents resource utilization parameters, including CPU, memory,

disk space, and network bandwidth. This essential data is systematically communicated to the

ResourceManager, playing a pivotal role in the efficient distribution and oversight of

resources throughout the Hadoop ecosystem.

1.3.3.3 ApplicationMaster (AM)

For every application within the Hadoop environment, a unique ApplicationMaster instance is

deployed. This entity engages in resource negotiations with the ResourceManager,

collaborating closely with NodeManagers to facilitate the execution and vigilant supervision

of tasks across the cluster.

1.3.4 Scalability

YARN significantly amplifies the scalability aspect of the Hadoop ecosystem. This

enhancement empowers Hadoop to efficiently manage and process data across even larger

clusters and accommodate a broader array of workloads, thereby extending its applicability

and performance in big data environments.

1.3.5 Improved Cluster Utilization

YARN’s sophisticated resource allocation mechanism markedly enhances the utilization

efficiency of cluster resources. This optimization leads to a notable improvement in the

overall operational efficacy of the Hadoop cluster, ensuring resources are used more

effectively and judiciously.

1.3.6 Support for Multiple Workloads

YARN significantly broadens the scope of Hadoop’s functionality by facilitating the

execution of diverse data-processing frameworks beyond the traditional MapReduce. This

capability enables Hadoop to support a wide array of processing models and applications,

encompassing interactive processing, real-time streaming, and graph processing, thereby

catering to a more varied set of computational requirements and use cases.

1.3.7 Flexibility

The integration of YARN into Hadoop has transformed it into a remarkably adaptable

platform. Developers can now simultaneously deploy a multitude of data processing engines

within the same Hadoop cluster. This convergence encompasses a wide spectrum of

computational strategies, including batch processing, interactive SQL, real-time streaming,

30

www.njesr.com

and machine learning. Such versatility significantly enhances Hadoop’s utility, making it an

ideal solution for a broad range of data processing scenarios.

1.3.8 Fault Tolerance

In line with Hadoop’s overarching design principles, YARN exemplifies robust fault

tolerance. This is evident in its ability to recover from failures seamlessly: the

ResourceManager possesses the capability to reboot a malfunctioning ApplicationMaster.

Concurrently, NodeManagers hold the proficiency to reassign tasks that encounter failures,

thereby maintaining continuous operation and ensuring the resilience of the system against

disruptions.

Hence, YARN has been pivotal in evolving Hadoop from a platform solely dedicated to

MapReduce operations into a multifaceted ecosystem. This transformation enables Hadoop to

adeptly manage an expansive array of data processing and analytical techniques, significantly

broadening its application spectrum and enhancing operational efficiency.

1.4 Hadoop Common

Hadoop Common serves as the cornerstone of the Apache Hadoop ecosystem, comprising a

suite of shared utilities and libraries. This foundational layer underpins and streamlines the

functionality of key Hadoop modules, including HDFS, YARN, and MapReduce, thereby

constituting an integral component that enhances the cohesion and efficiency of the overall

Hadoop framework. Here are some essential components of Hadoop Common:

1.4.1 Foundation of Hadoop

Embedded within the Hadoop ecosystem, Hadoop Common functions as the essential

infrastructure layer, delivering key foundational services and capabilities vital for the

operation of other Hadoop modules. It encompasses a comprehensive set of Java libraries and

scripts pivotal for initiating Hadoop, as well as the source code forming the bedrock of

Hadoop’s core architecture.

1.4.2 Utilities and Libraries

Hadoop Common is composed of an array of utilities and libraries that underpin crucial

functions such as filesystem and I/O abstractions, security features, networking capabilities,

and administrative tools. These components are integral to the seamless operation and

interconnectivity of the diverse elements within the Hadoop ecosystem.

1.4.3 Abstraction and Interoperability

Hadoop Common serves as the cornerstone for simplifying complex underlying systems,

encompassing filesystems, operating systems, and network architectures. This level of

abstraction guarantees that Hadoop seamlessly interfaces with a wide array of data sources

31

www.njesr.com

and systems, fostering robust integration and interoperability within diverse computing

environments.

1.4.4 Configuration Management

Hadoop Common is pivotal in orchestrating the configuration parameters and operational

settings for Hadoop. This involves managing configurations for essential Hadoop daemons

including the NameNode, DataNode, ResourceManager, NodeManager, among others,

ensuring seamless and efficient functionality across the Hadoop ecosystem.

1.4.5 Serialization And Deserialization

Hadoop Common encompasses APIs dedicated to the serialization and deserialization

processes. These APIs are crucial for encoding data into a format suitable for storage or

transmission and subsequently decoding it back to its original form. This functionality is

essential for the effective and efficient movement of data across the various nodes within a

Hadoop cluster.

1.4.6 Remote Procedure Call (RPC) and HTTP/FTP Support

Hadoop Common includes support for Remote Procedure Call (RPC) and HTTP/FTP

protocols, which are fundamental to enabling communication between different nodes within

the Hadoop cluster. This capability is a cornerstone for the operation of a distributed

computing environment, as it ensures seamless and efficient data exchange and task

coordination across the cluster’s nodes.

1.4.7 Platform Independence

Hadoop Common is equipped with the essential tools and mechanisms that grant Hadoop the

versatility to operate across diverse hardware configurations and operating systems. This

feature endows Hadoop with platform independence, ensuring its adaptability and

functionality in a wide array of computing environments, thus broadening its applicability

and ease of integration into different technological ecosystems. Hence, Hadoop Common

equips the Hadoop ecosystem with essential tools and abstractions, ensuring its compatibility

across diverse hardware platforms and operating systems, thus enhancing its platform

independence.

1.4.8 File System and I/O Operations

The module encompasses a range of interfaces and classes designed for interaction with and

management of files, not only within local file systems but also across various supported

distributed file systems, including HDFS.

1.4.9 User Interface Tools

Hadoop Common includes a suite of command-line tools and interfaces designed for direct

interaction with Hadoop, encompassing a range of functionalities from file system operations

32

www.njesr.com

to job submission and cluster management tasks. Delivers insights into the overall condition

of HDFS, encompassing details about the NameNode’s status, block pool metrics, and a

comprehensive list of DataNodes within the cluster.

1.4.10 JAR Files and Dependencies

Hadoop Common simplifies the development process for Hadoop applications by providing

essential JAR files and dependencies, streamlining the creation of applications designed to

integrate seamlessly with Hadoop’s core components.

In essence, Hadoop Common serves as the fundamental backbone of the Hadoop ecosystem,

offering a suite of essential utilities and services. This foundational component is vital for the

seamless integration and efficient operation of various Hadoop modules, solidifying its role

as an integral aspect of the Hadoop platform.

1.5 Hadoop Ozone
Hadoop Ozone, a component of the Apache Hadoop ecosystem, stands as a scalable and

distributed object store. In an era where data volumes are skyrocketing, the demand for

storage solutions that can adeptly scale and manage large datasets is paramount. Ozone rises

to this challenge, presenting itself as a formidable and scalable storage option, poised to

complement or, in specific use cases, supplant the Hadoop Distributed File System (HDFS).

The following points offer a comprehensive overview of Hadoop Ozone’s capabilities and

features:

1.5.1 Object Store

Ozone distinguishes itself from HDFS by functioning as an object store rather than a

traditional file system. It handles data as discrete objects, akin to the approach adopted by

AWS S3. This method offers enhanced flexibility and scalability, particularly adept at

managing vast volumes of data, a significant advantage over the conventional file-based

system of HDFS.

1.5.2 Scalability

Ozone’s architecture is engineered to efficiently manage immense namespaces, encompassing

tens of billions of files and objects. This capacity makes it particularly adept at handling

scenarios with an extensive number of small files, a task where it surpasses HDFS in

efficiency, thereby catering effectively to applications with such demanding storage

requirements.

1.5.3 Block Storage Layer

Ozone innovatively separates its block storage layer from the namespace layer, a design

choice that enhances its scalability and streamlines the management of data blocks. This

33

www.njesr.com

architectural distinction allows for more efficient handling of the data, facilitating Ozone’s

ability to scale effectively as data demands grow.

1.5.4 Compatibility with HDFS

Ozone maintains compatibility with HDFS APIs, ensuring seamless integration with existing

Hadoop applications. This feature facilitates an easy transition for systems currently reliant

on HDFS, as they can interact with Ozone without requiring significant alterations.

1.5.5 Ozone Components

Ozone Components includes, Ozone Manager (OM), Storage Container Manager (SCM), and

Data Nodes.

1.5.5.1 Ozone Manager (OM)

Functions akin to the NameNode in HDFS, managing the namespace and orchestrating client

operations within the Ozone environment.

1.5.5.2 Storage Container Manager (SCM)

Oversees the distribution of data blocks and maintains the health and functionality of the data

nodes.

1.5.5.3 DataNodes

Safeguards the actual data, with Ozone repurposing HDFS DataNodes for the storage of

Ozone-specific data blocks. DataNodes in Hadoop Ozone play a crucial role in data storage

and management.

1.5.6 Space Utilization

Ozone is engineered for enhanced space efficiency relative to HDFS, particularly adept in

scenarios characterized by an abundance of small files.

1.5.7 Robustness and Fault Tolerance

Ozone incorporates mechanisms for replication and fault tolerance, capable of duplicating

data across various DataNodes to guarantee data resilience and maintain high availability.

1.5.8 Support for S3 API

Ozone facilitates integration with applications and tools tailored for Amazon S3 by providing

compatibility with the S3 API.

1.5.9 Use Cases

Ozone is optimally designed for applications that demand large-scale, distributed object

storage, such as big data analytics, machine learning, and environments handling extensive

volumes of small files.

1.5.10 Security and Governance

Ozone incorporates robust security and governance features, including Kerberos integration

for authentication and mechanisms for enforcing access control policies.

Hadoop Ozone marks a pivotal advancement within the Hadoop ecosystem, effectively

overcoming HDFS’s constraints in handling vast quantities of files. It offers a versatile and

34

www.njesr.com

scalable storage solution adeptly tailored to the demands of contemporary big data

applications.

1.6 Acknowledgement

I am thankful to the Commissionerate of College Education, Rajasthan, Jaipur, and Dr.

Bhimrao Ambedkar Government College, Sriganganagar, for giving me opportunities to work

and providing the facility of an e-library.

References

1. White, T. (2015). Hadoop: The Definitive Guide (4th ed.). O’Reilly Media.

2. Hadoop. Web Page. hadoop.apache.org/core/

3. Almansouri, H. T., & Masmoudi, Y. (2019). Hadoop Distributed File System for Big

data analysis. In 2019 4th World Conference on Complex Systems (WCCS) (pp. 1-5).

Ouarzazate, Morocco. https://doi.org/10.1109/ICoCS.2019.8930804

4. Bante, P. M., & Rajeswari, K. (2017). Big Data Analytics Using Hadoop Map Reduce

Framework and Data Migration Process. In 2017 International Conference on

Computing, Communication, Control and Automation (ICCUBEA) (pp. 1-5). Pune,

India. https://doi.org/10.1109/ICCUBEA.2017.8463824

5. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., & Rasin, A.

(2009). HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies

for Analytical Workloads. In Proceedings of the VLDB Endowment International

Conference on Very Large Data Bases (pp. 1-4). Lyon, France: VLDB 09.

6. Saraswat, P., & Raj, S. (2021). A Review Paper on Hadoop Architecture. International

Journal of Innovative Research in Computer Science & Technology (IJIRCST), 9(6),

96-99. https://doi.org/10.55524/ijircst.2021.9.6.22

7. OpenAI. (2023). ChatGPT. https://www.openai.com/chatgpt.

