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DIELECTRIC PROPERTIES OF MATERIALS  

  

1. Introduction 

  Dielectrics are insulators i.e., non-conductors of electricity.   The function of any insulator is to 

prevent the flow of electricity through it when a potential difference is applied across its ends.  These 

materials prevent the leakage of electrical charges in electrical devices.  Substances like bakelite, PVC 

used in electrical wiring and pipes, polymer materials etc., come under this category.  Dielectrics possess 

high resistivity values in the range 106 -m to 1016-m.  Under high voltage bias, they allow very little 

current (10-6 A to   10-14 A).  They withstand very high voltages.  The conduction phenomenon in 

dielectrics is mostly associated with ionic motion through defects or hopping of charges.  They have no 

free charges.  They consist of positively and negatively charged particles bound together.  The 

fundamental action of the electrical field is to separate positive and negative charges of the entire volume 

of the dielectric, causing what is known as the polarization of the dielectric.  Fig.1. shows the effect of 

polarization in a dielectric when external field E0 is applied on a dielectric.  We see that the net 

polarization charges produced at the faces of the dielectric, a positive charge on the right and a negative 

on the left; inside the medium there is no excess charge in any given volume element.  The medium as a 

whole remains neutral, and the positive charge on the right is equal in magnitude to the negative charge 

on the left.  These induced charges create their own electric field Ep called polarization field that is 

directed to the left, and thus oppose the external field E0.  When we add this polarization field Ep to the 

external  

 

 

 

 

 

 

 

 

 

 

Fig.1.   Effect of polarization in a dielectric. 

 

field E0, so as to obtain the effective field E, we find that E<E0. Therefore, effect of introducing insulating 

substance (i.e., dielectric) results in reduction in applied field or reduction in surface charge density.  

Thus, the polarization of the medium reduces the electric field in its interior.  During the polarization the 
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charges in the dielectric are displaced from their equilibrium positions by distances that are considerably 

less than atomic diameter.  There is no transfer of charge over macroscopic distances such as occur when 

a current is set up in a conductor. 

 

Dielectrics: Dielectrics are the insulating materials having electric dipoles permanently or temporarily by 

inducement during the application of electric field. 

 

Electric Field Strength or Intensity (E):  The space around the charged body, up to where its influence 

felt is called Electric Field.  Suppose an additional infinitesimal test charge q0 is brought into the electric 

field and at a certain point in it, it experiences an electrostatic force F. The electric field strength or 

intensity E at the point is a vector and defined by 

   E = 
0q

F
 volt/metre       

Electric Field Induction (or) Flux density (or) Displacement Vector (D):  Consider a charge q at the 

centre of a sphere of radius r. The charge q will send q lines of force and this will be received by surface 

area 4 r2.The number of electric lines of force received by a unit area is called flux density or electric 

displacement D.  

i.e., 
A

q

r

q
D 

24
; where A is the surface area of the sphere, 

The unit of electric flux density is coulomb/metre2. 

 

Electric dipoles:  The system of two equal and opposite charges separated by certain distance is called 

electric dipole is shown in Fig. 2. 

     -q        - - - - - - -p             +q 

  

   Fig.2 An electric dipole 

 

 

Electric Dipole moment:  The product of any one of two charges of dipole and the separation between 

them is called electric dipole moment. 

Let the two charges are +q and –q separated by a distance r.  The moment of this dipole is defined 

as 

p = qr                                        
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The dipole moment is therefore equal to the magnitude of the one of the charges times the distance 

between them.  The unit of electric dipole moment is esu-cm     (10-18 esu-cm = 3.3 x 10-30 C-m = 1 

debye) 

Polarization (P):  The process of producing electric dipoles out of neutral atoms and molecules 

is known as polarization.  Polarization P in a solid is defined as the total dipole moment per unit 

volume: 

P = 
V

rq

p n

ii

n

i


       

Here P is the total dipole moment (including the induced and permanent) and n is the 

number of dipoles per unit volume.  Polarization P has the same units as the surface 

charge density (C-m-2).  This equivalence is substantiated by the fact that electric field 

induces charges on the surface of the dielectric and the density of charges is a measure 

of the extent of polarization. 

 

Dielectric Constant:  Dielectric constant or relative permittivity is defined as the ratio of permittivity of 

the substance to the permittivity of the free space,  

Consider a parallel plate capacitor consisting of two plane parallel plates of area A and separation 

d, charged with a surface charge density .  If the space between the plates is vacuum and if d is small 

compared with the dimensions of the plates. 

Suppose now that the space between the plates is filled with an insulating substance the charge 

on the plates being kept constant.  The new potential difference V is lower than Vvac and the 

capacitance is increased.   

 The static dielectric constant is then defined by 

 = 
V

Vvac
  = 

vacC

C
 

 Thus, the field strength is reduced from the value Evac to the value E, where  

  
E

Evac
=  

 in other words, the effective surface charge density on the plates is now changed from  = 
4

vacE
   

to     l = 
4

E
. 
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The effect of introducing the insulating substance is thus to reduce the surface charge density by an 

amount 

 - l      =  
4

vacE
-
4

E
     = ( - 1) 

4

E
   

Since the charge on the plates is being kept constant, the positive plate thus acquires a negative induced 

surface charge density ( -  l) and vice versa; whole of the dielectric becomes a single dipole of moment   

( -  l)Ad.  Under this condition, and using equation  we see that ( -  1) = P.  Thus, the quantity on the 

left hand side of the of equation is the polarization of the dielectric and we can write 

P = ( - 1) 
4

E
      

The above explanation of the induction of charges at the surface of the dielectric is in accordance with 

that considered earlier. 

     D = E + 4 P = E    

 Dielectric constant expresses the properties of the medium: all dielectric and optical properties of 

the medium are contained in this constant.  

 

Susceptibility (  ):   It is defined as polarization per unit electric field.  

   
E

P
 ;    

It measures the amount of polarization a given field produces.  In empty space P=0,  = 0,  = 1.     

Polarizability():  The strength of the induced dipole moment an atom acquires is directly proportional 

to the strength of the external applied field  

i.e., p   E 

         p = E   

 where  is known as dielectric polarizability.  We can relate polarizability , which is an atomic property 

to the macroscopic property polarization P.  It has the dimensions of volume. 

 

 

1.1polarizability: 

 Polarization occurs due to several microscopic mechanisms.  Polarization is a consequence of the 

fact that when an electric field acts on a molecule/atom, its positive charges (nuclei) are displaced along 

the field while the negative charges (electrons) in a direction opposite to that of the filed.  The opposite 

charges are thus pulled apart and the molecule is polarized.  The displacements of electrical charges result 
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the formation of dipoles.  Particularly in d.c. electric fields, the macroscopic polarization vector P is 

created by three types of mechanisms and hence polarization can be broadly classified into three types:  

 

1. Electronic Polarization        

2. Ionic Polarization 

3. Orientational Polarization 

1.1. (a) Electronicpolarization:  Electronic polarization is due to displacement of charge centres of 

electron cloud (negative charge centre) and nucleus (positive charge centre) of an atom in the presence of 

an applied electric field. 

 Although we are interested in the dielectric properties of solids, it will be useful to consider first 

the much simpler problem of the behaviour of free atoms and molecules in an external field. 

 Consider an atom of a dielectric material such that its atomic number is equal to ‘Z’ and atomic 

radius ‘r’. The centres of gravities of charges of electron cloud and positive nucleus are at the same point 

and hence there is no displacement.  Suppose if the atom is placed in a d.c. electric field of strength ‘E’, 

the nucleus and the electron cloud experiences Lorentz forces of magnitude “ZeE” in opposite directions. 

i.e., nucleus and electron cloud are pulled apart, therefore an attractive coulomb force develop between 

them. When the Lorentz force and coulomb attractive forces are equal and opposite, there is a new 

equilibrium between the nucleus and the electron cloud of the atom and hence dipole is formed. Let the 

distance of separation between the centres of the displaced nucleus and electron cloud is ‘d’. 

In Fig. 3 atom without any field and atom with field. 

 

 

 

 

 

 

  

Fig. 3.Atom without any field and atom with field. 

The negative charge enclosed in the sphere of radius ‘r’ is equal to  3

3

4
d  

Where ‘  ’ is the charge density of electron cloud, and is equal to 




















3

3

4
r

Ze



 

Therefore charge enclosed in the sphere of radius, d is,  

 

r 

d 

E  
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       

3

4

Ze-

3
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3
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


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
3

3

r
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Therefore, Coulomb force of attraction, Fc  

 

2

d]. radius of sphere thein  enclosed Ze.[charge

d
  

   
3

22

32

3.

r

deZ

rd

ZedZe
Fc





  

 

Lorentz force of repulsion experienced by the electron due to applied field ‘E’ is  

 

  ZeEFL         

In equilibrium condition,  

    ZeE
r

deZ



3

22

 

    
3r

Zed
E   

    E
Ze

r
d

3

  

     d  E  

i.e., the separation between the two charge centres is proportional to the applied field ‘E’.  

 

The induced electric dipole moment, 

    p = Zed = r3E,      

 

and the induced polarizability  

    e = 
E

p
 = r3       

  

Hence, e has the dimensions of a volume.  It is also evident that in general atoms with many electrons 

tend to have a larger polarizability than those with few electrons.    Electrons in the outer electronic shells 



Chapter I Dielectric properties of materials 

7 
 

will contribute more to e than do electrons in the inner shells, because the former are not so strongly 

bound to the nucleus as the latter.  Positive ions therefore will  

have relatively small polarizabilities compared with the corresponding neutral atoms: for negative ions 

the reverse is true.   

1.1. (b)Ionic polarization 

 Ionic polarization is due to the displacement of positive ion and negative ion of a molecule in the 

presence of an applied electric field and occurs in ionic crystals.  One might suppose that an ionic crystal 

would possess polarization even in the absence of an electric field, since each ion pair constitutes an 

electric dipole.  But this is not so, because the lattice symmetry ensures that these dipoles cancel each 

other every where.  So, the polarization in ionic crystals arises due to the fact that the ions are displaced 

from their equilibrium positions by the force of the applied electric field. 

Consider an ionic compound composed of positive and negative ions separated by inter atomic 

distance, ro, then the dipole moment is ‘ero’ in the absence of applied field. When the field E0 is applied to 

the molecule, the positive ion is displaced in the direction of field and negative ion is displaced in 

opposite direction until ionic bonding forces stop the process. 

Due to the ionic displacement the resultant dipole moment increases and is given by  

    p = e (x1 + x2) 

where x1 is the shift of positive ion and x2 is the shift of negative ion with respect to their equilibrium 

position.   

 Due to the application of static electric field E0, the force produced may be taken as F newtons 

and the restoring force on positive ion is 1x1 and the restoring force on negative ion is 2x2. Here 1 

and 2 are restoring force constants which depend upon the mass of ion and angular frequency of the 

molecule in which ions are present. 

 Therefore, under equilibrium  

 

   F = 1x1 = 2x2 

   x1 = 
2

0

0

1  m

eEF
      

where m is the mass of the positive ion and 

    F = eE0 and 1 = m0
2 

Similarly, for negative ion  

    x2 = 
2

0

0

M

eE
      

where M is the mass of negative ion. 
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Therefore, (x1+x2) = 
2

0

0



eE










Mm

11
      

dipole moment  

p = e(x1+x2) = 
2

0

0

2



Ee










Mm

11
    

Ionic polarizability  

i   = 
0E

p
 = 

2

0

2



e










Mm

11
     

 

Thus ionic polarizability iis inversely proportional to the square of the natural frequency of the ionic 

molecule and to its reduced mass where reduced mass  

    

1
11













Mm
 

    

1.1.( c) OrientationalPolarization 

 Orientation polarization is due to the alignment of dipoles of polar molecules in the presence of applied 

electric field.  Polar molecules have permanent dipole moments even in the absence of an electric field.  

These polar molecular dipoles are randomly distributed in space in the absence of an electric field and 

hence the net dipole moment of the dielectric is zero. But when dielectric is kept under electric field, the 

field produces a torque in individual dipoles and there is a tendency for the field to align dipole with the 

field and a net dipole moment per unit volume is originated in the dielectric. If the field is strong enough, 

the dipoles may completely be aligned along the field direction. The polarization due to the orientation, 

i.e, orientational polarizability ‘ o’.  Fig. 4.Represents the orientational polarization of dipoles.  

 

 

E=0                                     E  

 

 

(a)                                        (b) 

dipoles in the                       dipoles in the   

absence of ‘E’                      presence of ‘E’ 

 

   Fig. 4.Orientational polarization.  
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Consider for example, a gas containing a large number of identical molecules, each with a permanent 

dipole moment p.  Without an external field, the dipoles will be oriented at random and the gas as a whole 

will have no resulting dipole moment.  An external field E will exert a torque on each dipole and will tend 

to orient the dipoles in the direction of the field. In Fig. 5torque applied by a field on a dipole. 

 

 

 

 

 

 

 

 

 

 

  Fig. 5Torque applied by a field on a dipole. 

 

On the other hand, the thermal motion of the dipoles will counteract this ordering influence of the 

external field.  Therefore, an equilibrium state will reach in which different dipoles will make zero to  

radian angles with the field direction, producing a net polarization in the direction of the field.  It is this 

polarization that we are going to calculate. 

 Let us define the potential energy of a dipole making a 900 angle with the external field as zero.   

The potential energy corresponding to an angle  between p and E is equal to  

–p E cos = p.E 

 According to statistical mechanics, the probability for a dipole to make an angle between  and 

+d with the electric field is then proportional to  

 

    2 sin  d exp[(pE cos )/kT] 

 

where 2 sin  d is the solid angle between  and +d.  The number of dipoles having their orientation 

between  and +d is also proportional to this probability.  Now a dipole of moment p making an angle 

 with the field direction contributes to the polarization a component p cos .  Hence the contribution 

made by the above number of dipoles is 

 

  p cos . 2 sin  d exp[(pE cos )/kT] 

  

eE 

 
E 

eE 
-e 

+e 
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and the average contribution per dipole p  is given by 

p  = 
 












0

0

]/)cosexp[(sin2

]/)cos(expsin2cos

kTpEd

kTpEdp

    

( = 0 corresponds to parallel alignment and  =  corresponds to anti parallel alignment of 

dipoles). 

Dividing numerator and denominator by 2 and letting 

  a = 
kT

pE
 ,     x = a cos ,    dx = -a sin d, 

  p = 







a

a

x

a

a

x

dxea

dxexp

 

p

p
 = 

aee

ee
aa

aa 1









 = coth a - 
a

1
 = L(a)    

 

The function L(a) is called the Langevin function, since this first derived by Langevin in connection with 

the theory of paramagnetism.  As a increases, the function continues to increase, approaching the 

saturation value unity as a  .  This situation corresponds to complete alignment of the dipoles in the 

field direction.    
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Fig. 6. Langevin function L(a) verses a 

  

The above Fig. 6 presents the as long as the field strength is not too high and the temperature is not 

too low, the situation may be strongly simplified by making the approximation a<<1 or 
kT

pE
<<kT.  

Under these circumstances the Langevin function L(a)  = a/3,  

 

  
p

p
  = L(a) = 

3

a
 =

kT

pE

3
 

 

  E
kT

p
p

3

2

         

Hence, orientational or dipolar polarizability 

 

  o = 
kT

p

E

p

3

2

        

Hence, orientational polarizability o decreases with temperature. Since higher is the temperature, greater 

is the thermal agitation and lower is ‘ o’                     

Fig. 1.7. The Langevin function L(a). For a<<1, the slope is 1/3
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 A large number of molecules have polarizability, yet not all the molecules. The deciding factor 

for its existence is simply whether or not the molecules have a permanent moment. The existence of a 

permanent moment is purely a matter of molecular geometry. For example, CO2 has no permanent 

moment at all, because its atoms are in line. On the other hand different geometry of H2O molecule gives 

p=1.87 Debye units to it.  

 Actually applicable to liquids and gases, because only in these substances the molecular dipole 

moment may rotate as continuously and freely as has been assumed in its derivation. In solids, a dipole 

may hop back and forth between certain discrete orientations in a manner which depends on the 

temperature and the electric field. 
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ALTERNATING FIELDS OF DIELECTRIC MATERIALS 

2.1 Introduction 

We now take up the study of the behaviour of dielectrics in alternating electric fields. Here 

again we make use of the same basic atomic models used earlier and study the behaviour of this model 

in alternating electric field. This study reveals that the dielectric constant under these conditions is a 

complex quantity. The imaginary part of this complex dielectric constant determines the dielectric losses 

of the material.  

In the macroscopic theory of isotropic dielectrics under static fields, the electric flux density D is 

proportional to the electric filed intensity E, so the D =  E, where  is a constant defined as the electric 

permittivity and is a property of the dielectric. 

When a dielectric material is subjected to an alternating field the orientation of the dipoles, and 

hence the polarization, will tend to reverse every time the polarity of the field changes. As long as the 

frequency remains low (<106 c/s) the polarization follows the alternations of the field without any 

significant lag and the permittivity is independent of the frequency and has the same magnitude as in 

static field. When the frequency is increased the dipoles will no longer be able to rotate sufficiently 

rapidly so that their oscillations will begin to lag behind those of the field. As the frequency is further 

raised the permanent dipoles, if present in the medium, will be completely unable to follow the field 

and the contribution to the static permittivity from this molecular process, the orientation polarization 

ceases; this usually occurs in the radio frequency range (106-1011 Hz) of the electromagnetic spectrum. 

At still higher frequencies, usually in the infra-red (1011-1014 Hz) the relatively heavy positive and 

negative ions cannot follow the field variations so that the contribution to the permittivity from the 

atomic or ionic polarization ceases and only the electronic polarization remains. 

The above effects lead to fall in the permittivity of a dielectric material with increasing 

frequency, a phenomenon which is usually referred to as anomalous dielectric dispersion. 

Dispersion arising during the transition from full atomic polarization at radio frequencies to 

negligible atomic polarization at optical frequency is usually referred to as resonance absorption. 

Dispersion arising during the transition from full orientational polarization at zero or low 

frequencies to negligible orientational polarization at high radio frequencies is referred to as dielectric 

relaxation. 
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It should be possible to explain the frequency dependence of the dielectric constant 

directly in terms of the electronic structure. It is known that the refractive index varies with the 

wavelength of light in the optical region the phenomenon being known as dispersion. Dispersion 

can be explained on the basis of classical theory which assumes that atom contains electrons 

vibrating at certain natural frequencies characteristic of the atom and that the application of an 

alternating field sets such electrons into forced vibration. Since the molecules in a dielectric are 

represented as dipoles on bound charges, there must be equal number of positive charges and 

negative charges because the dielectric is a neutral medium. When an electromagnetic wave 

impinges on this bound charge, it is caused to oscillate and therefore to radiate. If the frequency 

of the wave is not equal to the natural frequency of the bound charge the forced oscillation will 

have small amplitude and the radiation is very weak. This corresponds to molecular scattering. If 

the frequency of the wave is equal to the natural frequency of the bound charge, there is 

resonance and a much larger energy form the wave goes into the charge. In solid, liquid or gas at 

high pressure there is strong intermolecular action and friction type forces cause heavy damping 

with the result that the dipole energy is quickly dissipated. This corresponds to true absorption. 

In a gas at low pressure there is no damping and the dipole radiate strongly. This is resonance 

radiation. The absorption of an electromagnetic wave by a conducting medium is easily 

explained because the conduction has a large number of free electrons. When the wave arrives its 

energy makes the charge move. The moving charge constitutes current and the usual dissipation 

of energy by the current explains the absorption of energy. 

At optical frequencies the permittivity is almost entirely due to the electronic polarization. To 

determine the dependence of the electronic polarizability on the frequency of the applied field we shall 

use the classical model of an electron elastically bound to the atom. 

 

2.2 The complex dielectric constant and Dielectric Losses 

 When a dielectric is kept between a capacitor plates is subjected to an alternating field the 

polarization P also varies periodically with time and so does the displacement D. In general however P 

and D may lag behind in phase relative to E so that for example if  

E = Eo cost       

 we have  

  D = D0 cos(t-)      



Chapter II  Dielectric properties of alternating electric fields 
 

15 
 

=D0 cos  cos t + D0 sin  sin t 

=  D1 cost + D2 sin t     

where   is the phase angle,  

  D1 = D0 cos  and  D2 = D0 sin .     

For most dielectric Do is proportional to Eo but the ratio (Do/Eo) is generally frequency dependent. To 

describe this situation one may thus introduce two frequency dependent dielectric constants, 

1 cos1

o

o

o E

D

E

D
  

11= sin
0

0

0

2

E

D

E

D
       

It is frequently convenient to sum these two constants into a single complex dielectric constant, 

*= 1 - i11      

Thus     D = * E0 eit = * E0 (cos t + i sin t)  

Also we see that  

'

''

tan



         

Because both1and 11are frequency dependent the phase angle   is also frequency dependent. We 

shall now show that the energy dissipated in the dielectric in form of heat is proportional to11.  

The current density in the capacitor is equal to
dt

Dd )(
. 

Thus                 J = 
dt

dD

dt

d




4

1
)(   

   =  tDtD 



cossin

4
21     

The energy dissipated or absorbed per second in the dielectric is given by 







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
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


2
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The value of integral containing D1 is equal to zero and we are left with 

112

02
8

)
8

( 







EEDW o       

the amount of energy absorbed is proportional to sinsince11 = (D0/E0) sin . The energy so 

dissipated in the dielectric medium is referred to as the dielectric loss.  For this reason sin is called the 

loss factor and  is the loss angle (but it is customary) to call tan as the loss factor; this is correct only 

for small values of  because tan sin. The dielectric loss at low frequencies is mainly due to d.c. 

resistivity. But at high frequencies the dielectric loss is mostly due to dipole rotations or to ionic 

transitions from the lower energy states to higher energy states. Because of the upward transition the 

energy is absorbed from the applied field. The losses associated with ions, the frequency of which fall in 

the infrared region, are usually referred to as optical infrared absorption.  Similarly, the losses in the 

optical region, associated with the electrons, are referred to as optical absorption.  

 

2.3 Dielectric Losses and Relaxation time 

 Let us consider a dielectric, for which the total polarization Ps in a static field is determined by 

three contributions, 

 Ps =Pe + Pi + Po       

In general, when such a substance is suddenly exposed to an external static field, a certain length of 

time is required for P to be built up to its final value. In the present section it will be assumed that the 

values of Pe and Pi are attained instantaneously, i.e., we shall be concerned with frequencies appreciably 

smaller than infrared frequencies. The time required for orientational polarization, Po to reach its static 

value may vary between days and 10-12 second, depending on temperature, chemical constitution of the 

material, and its physical state is called relaxation time. 

 To begin with we shall give a phenomenological description of the transient effects based on the 

assumption that a relaxation time can be defined; we can then proceed to consider the case of an 
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alternating field. Let Pos denote the saturation value of Po as function of the time after the field has been 

switched on is given by  

  Po(t) = Pos(1- e-t/)      

where  is the relaxation time. 

  dPo/dt = (1/) [ Pos – Po (t)]      

For the decay occurring after the field has been switched off, this leads to a well–known proportionality 

with e-t/. In the case of an alternating field E = E0 eit, equation may employed if we make the following 

change: Pos must be replaced by a function of time Pos(t) representing the saturation value which would 

be obtained in static field equal to the instantaneous value E(t). Hence for alternating fields we shall 

employ the differential equation 

  dPo/dt =(1/) [[ Pos(t) – Po (t)]      

Now, our final goal is to express the real and imaginary parts of the dielectric constant in terms of the 

frequency  and the relaxation time. For this purpose we shall define the “instantaneous” dielectric 

constant ei by  

   Pe + Pi = (ei – 1)/4   E  

   

We may then write  

 Pos = Ps – (Pe + Pi ) = (s - ei )/4   E     

Where s  is the static dielectric constant and ei is the dielectric constant arising due to electronic and 

ionic polarization.   Substitution of Pos 

 dPo/dt = (1/)[ (s - ei )/4   E0 eit- Po ]    

Solving this equation, we obtain 

  Po(t) = Ce-t/ + 1/4  (s - ei)/(1+i) E0 eit   

The first term represents a transient.  The total polarization is now also a function of time and is given 

by P(t) = Pe +  Pi + Po(t). Hence, for the displacement one obtains 

 D(t)= *E(t) = E(t) + 4 P(t)      

where * is the complex dielectric constant. From the last two equations and from the definition * = 1  – 

i 11the following expressions result: 

 1() = ei + (s - ei)/(1+i22)      
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11() = (s - ei)  /(1+i22)     

These equations are frequently referred to as the Debye’s  equations is shown in Fig. 1.. 

 

 

 

 

 

 

 

 

 

 

loss, which is proportional to 11, exhibits a maximum for  = 1, i.e., for an angular frequency equal to 

1/. Also, for frequencies appreciably less than 1/, the real part of the dielectric constant 1 become 

equal to the static dielectric constant. In this frequency range, therefore, the losses vanish and the 

dipoles contribute their full share to the polarization. On the other hand, for frequencies larger than 1/, 

the dipoles are no longer able to follow the field variations and the dielectric constant 1approaches ei. 

Note that for this type of mechanism the relaxation time decreases with increasing temperature 

as so does the saturation polarization. It is of interest to observe that if the quantities 1 and 11are 

measured at a constant frequency but at different temperatures, the curves as indicated in Fig. 2 may 

be expected to result.        

 

 

 

 

 





 

'

'' ea

s



Fig. 1 Debye curves for ’ and ’’ as function 
of frequency for a dielectric with a single 
relaxation time 

T

'

''



Fig.2 The dielectric constant as a function of 
temperature at a given frequency, as 
predicted from the model discussed in the 
text 
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2.4 The classical theory of electronic polarization and optical absorption  

The concept of the static polarizability due to elastic displacements of electrons and ions was 

introduced. In the present section the classical theory of this phenomenon in alternating fields will be 

discussed. We have seen that restoring force determining the displacement is in first approximation 

proportional to the displacement itself. The discussion is therefore based on the model of a 

displacement itself. The discussions is therefore based on the model of an elastically bound particle of 

charge e and mass m in an alternating field E0 eit may be written   

xm
xt

dx
m

dt

xd
m 2

02

2

   =  e E0eit    

where 0 is the natural angular frequency of the particle; 0= (f/m)1/2 where f is the restoring force 

constant ; the second term on the left – hand side is a damping term, which results from the fact that 

the particle emits radiation as a consequence of its acceleration and  is the damping factor. The 

solution for this forced damped vibration is  

x(t) =
m

e
.





i

eE ti

 22

0

0      

We first of all note that in a static field, for =0, this reduces simply to   

x = eE0/m0
2 or s = ex/E0 = e2/m0

2 for  = 0  

Where s is static polarizability associated with the elastically bound particle. If we take for e and m the 

electronic charge and mass, this expression would correspond to the contribution of a particular 

electron to the electron polarizability. The electronic polarizabilities are of the order of 10-24 cm3; this 

gives a natural frequency 0 = 0/21015 per second. Thus, even for frequencies corresponding to the 

visible spectrum, the electronic polarizability may be considered constant. If e and m refer to an ion, the 

natural frequencies are of the order of 1013 per second, corresponding to the infrared part of the 

spectrum.   

 The electronic polarizability is therefore  

 αe= 
E

ex
 =

 im

e

 22

0

2 1
  

 

The complex dielectric constant is then given  by 
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 () = 1+ 
m

Ne24
.

 i 22

0

1
     

where N is the number of electrons per unit volume.  This follows by using P = Nex and  = 1+4P/E. 

Now, from the definition of the complex dielectric constant () = 1() – i11() 

One finds 

1()= 1+ 
m

Ne24
22222

0

22

0

)( 





      

11() = 
m

Ne24
22222

0 )( 




     

It may be noted that 1() gives us the value of the dielectric constant and from11()we get thepower 

dissipated and hence the damping loss.  The variation of (1 – 1) and 11these with frequency is shown in 

Fig .3.   















 

 

maximum at = 0.  The meaning of this maximum is that the material absorbs energy at the natural 

frequency; this type of absorption is called resonance absorption.  In the absorption region, the 

dielectric constant 1 depends on frequency and one speaks in this connection of dispersion. The region 

for which 1 decreasing with frequency is referred to as the region of anomalous dispersion. 

 

 

 




''

Fig.3  Behaviour of o
’ and o

’’ as function of 
frequency in the vicinity of the resonance 

frequency o 
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2.5.Total Polarizability 

Let us now discuss the total polarizability α = αo +αi +αe.  It has been found that the total polarizability of 

a dielectric substance shows marked difference in behavior when studied as a function of frequency.   

To summarize the frequency-dependence of the polarizability we have represented, in Fig.4, α() for a 

dipolar substance.  It is clear that as we go from the static to the optical region, the polarizabilityα 

decreases by a substantial amount.  Speaking in terms of dielectric constant, the dielectric constant of 

water, for example is 81 at zero frequency while it is only 1.8 at optical frequencies.  Moreover, the 

decrease in polarizability α is not uniform –remarkable decrease occurs only in the microwave, infrared 

and ultra-violet regions. 















 

 

 

 

 The behaviour of polarizability can be understood from the various possesses and from the 

concept of the relaxation time for each process.  When the frequency of the applied field is much 

greater than the inverse of the relaxation time for a particular polarization process, that particular 

polarization process fails and so it does not contribute to polarizability.  Thus, the decrease of total 

polarizability with increase in frequency is due to the disappearance of αo,αi and αe successively. 



2.6 Measurement of Dielectric constant  

α (real part) 



αe + αi + αo 

αe + αi 

αe 

Micro
waves 

Infrared Ultra 
violet 

 

Fig. .4 Variation of total polarizability as a function of frequency. 
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 Dielectric constant of a given substance is usually measured by comparing the capacity Cd of a 

condenser filled with the substance and the capacity C0 of a the empty condenser .  The ratio 
0C

Cd  = , is 

the dielectric constant.  The capacities Cd and C0 may be measured by resonance method as shown in 

the Fig .5. 

 

Fig. 5 Principle of the resonance method for measuring Co and Cd. 

 

 In the figure, Cs is a calibrated variable condenser and C is the condenser in which the given substance 

which is taken in the form of a thin disc may be placed.  By varying Cs so keep the resonance frequency  

 o = 
)]([

1

CCL s 
      

constant when C is empdty and then filled, we may determine C0 and Cd, and hence .  The voltmeter V 

measures the response of the resonant circuit. 

 This method is generally used to measure the dielectric constant up to frequencies 100 Mhz.  At 

the microwave region ( 103 to 105 Mhz) the frequencies are so high that the dimensions of the 

apparatus are comparable with or greater than the wavelength, and the specimen hen can no longer be 

treated as if it were in quasi-static fields.  Rather, it has to be treated as a medium for the propagation 

of electromagnetic waves. Here we may measure the dielectric constant of the specimen by measusring 

the wavelength of the microwave radiation in the specimen and using the relation 

  Cs C 
L  

V 

 
Oscillator 

Specimen 
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specimen

vvacuum




 = (µ)1/2      

where µ is the permeability; for non-magnetic materials,µ  1.  For optical and infrared frequencies,  

can be measured by measuring the refractive index, n as 

  n2 = µ   

2.7Outline of the lesson 

When a dielectric material is subjected to an alternating field the orientation of  the dipoles 

alter in accordance with the field changes. At higher frequencies dipoles will no longer be able to rotate 

sufficiently rapidly and unable to follow the field and the permittivity of the material decreases.  The 

average time taken by the dipoles to orient in the field direction is known as relaxation time. 

When a dielectric is subjected to an alternating field, the polarization and displacement vector 

also vary periodically with time and this gives rise to complex dielectric constant. Dielectric constant 

depends on the frequency of the applied electric field.When a dielectric is subjected to alternating field, 

the electrical energy is absorbed by the material and dissipated in the form of heat.  This dissipation of 

energy is called dielectric loss.  Debye’s equations relating dielectric loss and relaxation time are  

 

1() = ei + (s - ei)/(1+i22)     

11() = (s - ei)  /(1+i22) 

The losses associated with ions, the frequency of which fall in the infrared region, are called as 

opticalinfrared absorptionand the losses in the optical region, associated with the electrons, are 

referred to as optical absorption.
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STATIC ELECTRIC FIELDS OF DIELECTRIC MATERIALS 
 

 

3.1 Introduction  

In this chapter how the internal field influences the dielectric constant is described in detail. The 

Classius –Mossotti relation that connects dielectric constant with the polarizabilities is also derived  

 

3.2Static Dielectric Constant of Gases 

 We are now in a position to give an atomic interpretation of static dielectric constant of a gas. It 

will be assumed that the number of molecules per unit volume is small enough so that the interaction 

between them may be neglected. In that case, the field acting at the location of a particular molecule is to 

a good approximation equal to the applied field E. Suppose the gas contains N molecules per unit 

volume; the properties of the molecules will be characterized by an electronic polarizability e, an ionic 

polarizability i, and a permanent dipole moment p. From the discussion in the preceding two sections it 

follows that, as a result of the external field E, there will exist a resulting dipole moment per unit volume: 

  P= N(e + i + p2/3kT)E      

 Note that only the permanent dipole moment gives a temperature dependent contribution, because 

e and i are essentially independent of T. If the gas fills the space between two capacitor plates of area A 

and separation d, the total dipole moment between the plates will be equal to  

  M = PAd 

This simple relation shows immediately that the same total dipole moment would be obtained by 

assuming that the dielectric acquires an induced surface charge density P at the boundaries 

facing the capacitor plates, as discussed in section 1.1.1.  Hence the quantity P introduced in 

moment per unit volume is identical with the quantity P introduced in section 1.1.1, where it 

represented the induced surface charge density at the dielectric-plate interface. The Debye 

formula for the static dielectric constant of gas. 

 P = ( - 1) 
4

E
     = N(e + i + p2/3kT)E  

(-1) = 4P/E = 4N(e + i + p2/3kT)   

As an example of an application of this formula, the temperature dependence of some organic substances 

in the gaseous state. The values of ( – 1) versus the reciprocal of absolute temperature have been plotted, 

leading to straight lines. From the slope of the lines and   knowledge of the number of molecules per unit 

volume, the dipole moment p may be obtained. Also, form the extrapolated intercept of the lines with the 

ordinate, one can calculate (e+i). The determination of dipole moments has contributed a great deal to 
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our knowledge of molecular structure. For example, CCl4 and CH4, do not possess permanent dipole 

moments (indicated by zero slope), in agreement with the symmetric structure of these molecules. 

Similarly, the fact that H2O has dipole moment of 1.84 Debye units, whereas CO2 has no dipole moment, 

indicates that CO2 molecule has a linear structure, whereas in H2O the two OH bonds must make an angle 

different from 1800 with each other. 

 

3.3Internal Field or Local Field 

In solids a molecule or atom experiences not only the external field, but the fields produced by 

the dipoles as well.  As a result of the long range of Coulomb forces, the later contribution 

cannot be neglected.  This resultant field is called the local field, and is responsible for polarizing 

individual molecules or atoms of solids. 

To calculate the local field, we follow the method suggested by Lorentz.  According to 

this method, we select a small spherical region from the dielectric with the atom for which the 

local field must be calculated at the centre. The radius of the sphere is chosen large enough to 

consider the region outside the sphere as a continuum whiles the region inside the  

s

phere 

as 

the 

actua

l 

struct

ure 

of 

the 

subst

ance.  

We 

supp

ose that, placing it in a uniform electric field between two oppositely charged parallel plates has 

uniformly polarized the given dielectric. 

 

 

 

Fig.1 Temperature variation of the static dielectric constant of some vapours. 
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Now, since the part of the dielectric external to the sphere may be replaced by a system 

of charges induced at the spherical surface as shown in Fig.2, the electric field at the center of 

the sphere may be written as  

Eloc = E0 + Ep + Es + Em     

Here E0 is the primary electric field due to the charge on the plates, Ep is the field due to the 

polarization charges at the plate-dielectric interface, Es is the field due to the charges induced at 

the spherical surface and Em due to all the dipoles of the atoms inside the spherical region. 

Now we know that E0 + Ep = E, the macroscopic electric field inside dielectric.  Hence,  

  Eloc = E + Es + Em      

Further, if we are considering crystals of high symmetry (such as cubic crystals) Em = 0.  This is 

because Em is due to all the dipoles inside the spherical surface, and in such crystals these are 

randomly distributed in position. 

We may then write 

  Eloc = E + Es       

As the assumption Em = 0 is not rue for them. To determine the Es we proceed as follows:  
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Fig. 2 Illustrating the calculation of the internal field as described in the text 
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Fig.3represents enlarged view of the sphere shown in Fig.3. The charge element on a 

surface element dS of the sphere is equal to the normal component of the polarization times the 

surface element, that is, -P cos dS.  According to Coulomb’s law, this charge element produces 

a force, given by 

dF = q1q2/r
2 = 

2

cos

r

dSqP 
  

 

acting on a test charge q assumed at the centre of the sphere in this direction of r.  Hence, the 

field dE, at the centre due to this charge element is 

  dEs = dF/q = 
2

cos

r

dSP 
       

Now resolving dEs into components parallel and perpendicular to the direction of P, we can see a 

perpendicular component will be cancelled due to an equal contribution from another 

symmetrically situated surface element. Thus only the component of dEs along the direction of P 

will contribute the entire surface. 

 

. . P 
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Fig. 3 Enlarged view of the sphere. 
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 Thus,   Es =  2

2cos

r

dSP 
       

Now the appropriate surface element dS in this case is the ring shown in Fig.3 so that               

dS = 2 r sin r d = 2 r2 sin d, and the limits of integration with respect to  are from 0 to .  

Thus,  

  Es = 


0

2

2cos

r

P 
2 r2 sin d, 

         = 2 P 


0

cos2 sin d,   

This integral can be evaluated directly by making the substitution  

 z = cos  and dz = -sin d, 

so that  

 Es = -2 P 
1

1

z2 dz = -2 P

1

1

3

3










 z
 

  = 
3

4 P
        

Eloc = E + 
3

4 P
        

This equation is called Lorenz relation. This shows that Eloc is indeed different from E, as it is expected.  

The former field is larger than latter, so the molecules are more effectively polarized.  

 Substituting value of P  

   Eloc = 
3

2
.       

This field is referred as Lorentz field.         

The assumption Em = 0 is valid for simple cubic lattice.  It is also valid for f.c.c. and b.c.c. 

lattices and for crystals such as NaCl.  It does not hold for all cubic crystals.  For example, in barium 

titanate, which has cubic symmetry Em does not vanish.  

 Each type of atom in a given crystal has its own internal field because the environment of the 

different atoms is generally different.  Thus the internal field at the location of atoms of type 1, 2, etc. 

may be written in the form  

 

  Eloc1 = E + 1P; Eloc2 = E + 2P, etc     

where the ’s are the internal field constants.  Only if Em = 0 do we have  = 4/3.   
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3.4The Clausius-Mossotti Relation       

Now we are in a position to relate the microscopicand macroscopic quantities defined above.  

The dipole moment p of a single atom is proportional to the local field, that is, 

p =  Eloc 

Where  is the electrical polarizability of the atom.  If there are different types of atoms, the 

polarizabilities are additive and the total polarization of an insulator containing N types is 

 P =  

N

i 1
ni i Eloc   =  Eloc 

N

i 1
ni i 

Where ni is the number of i atoms per unit volume having polarizabilities i and acted on by local 

field  Eloc .   

P = (E + 
3

4 P
 )  

N

i 1
ni i 

or, after rearranging terms 
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i
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
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4
      

If all the atoms i are the same, then i

i

in  = n and n =
M

N a
, where  =density, Na is Avogadro 

number, and M is molecular weight.  So, equation (12.14) can be written in this case as 

  2

1








  = 



M

Na

3

4
       

or  


M
2

1








  = 

3

4
Na      

The Clausius-Mossotti equation.  It can be used to determine the polarizabilities of the atoms if 

the dielectric constant is known.  Further, the dielectric constants of new materials can be predicted from 
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knowledge of the polarizabilities.  This equation thus provides the necessary relation between the 

microscopic and macroscopic quantities.   

3.5 The static dielectric constant of solids 

From the discussions in the preceding sections it is evident that in general the dielectric polarization P 

may be considered the sum of three contributions, 

  P= Pe + Pi + Po       

where the subscripts e, i and o refer, respectively, to electric, ionic and orientation polarization. This 

provides a basis for the classification of dielectrics into three classes: 

(i) Substances for which Pi = Po = 0 so that P =Pe 

(ii) Substances for which Po= 0 and P = Pe + Pi 

(iii) Substancesfor which all three contributions are different from zero. 

 Although the calculation of internal field is usually complicated by the fact that the Lorentz 

expression does not apply, some remarks may be made about each of these classes in so far as they apply 

to solids. 

(i) Substances for which the static polarization is entirely due to electronic displacements are 

necessarily elements, such as diamond. one obtains from the relation  

Pe = NeEloc  = ( –1 )E/4      

The following expression for the dielectric constant: 

  –1 = 4 N e/(1-Ne)     

Where N represents the number of atoms per unit volume. In the particular case for which the Lorentz 

expression for the internal field  =4/3.  The resulting expression is then usually written in the form of 

Clausius-Mossotti formula. 

 

 ( –1)/ ( +2) = (4/3)Ne   

It has therefore been applied mainly to gases. For solid elements one would have to vary the 

temperature in order to vary N and the possible range of N values is of course very limited.  

 It may be noted that for this class of substances under consideration, the dielectric constant is 

equal to the square of the index of refraction,  =n2. The reason is, that e is constant even for frequencies 

in the visible spectrum.  This relationship has been confirmed experimentally for diamond and the 

dielectric constant of diamond is 5.680.03. 

(ii) In general, solids containing more than one type of atom, but no permanent dipoles, exhibit 

electronic as well as atomic or ionic polarization. Of particular interest in this respect are the crystals, 

such as the alkali halides. Consider, for example, a NaCl crystal in an external static field E. Apart  from 

the electronic displacements in the ions relative to the nuclei, the positive ion lattice will tend to move as 

a whole relative to the negative ion lattice. Consequently, a considerable contribution to the total 
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polarization may be expected to arise from the ionic displacements (Pi). That this is indeed the case, 

becomes apparent from a comparison of the values of the static dielectric constant defined by  

Pe + Pa = ( – 1) E/4    

and the “high-frequency dielectric constant” 0 defined by  

                     Pe = (0 – 1) E/4       

 Hence Pi is about two or three times Pe in these compounds. In non-ionic compounds, on the 

other hand, Pi is usually a relatively small fraction of Pe. 

 The observed difference between the static and high- frequency dielectric constants is because of the 

difficulties involved in calculating quantitatively the internal field. 

 It may be noted that the force constant and the masses of the positive and negative ions determine 

the infrared frequency associated with the lattice vibrations. It is therefore possible to express the 

difference (s - 0) in terms of infrared absorption frequency of the lattice.    

 

(iii) In substances composed of molecules which bear permanent electric dipole moments, the 

total polarization is made up of three contributions, 

P =Pe + Pi +Po      

  Were Po corresponds to the dipolar contribution. There exists no general quantitative 

theory for dipolar solids because first of all the same difficulties arises in evaluating the internal fields as 

in class (ii), and further more, the dipoles in such solids may not able to rotate at all or only to some 

extent. The discussion must therefore be limited to some qualitative remarks. As an example of a dipolar 

solid which behaves in a relatively manner, the dielectric constant measured as function of temperature 

for C6H5NO2(nitrobenzene).  It is observed that at the melting point there is large increase in dielectric 

constant. This is interpreted as an indication that in the solid the dipoles cannot rotate freely and Po is 

essentially zero; in the liquid, alignment of the dipoles in the field direction is possible, so that the 

increase in  is determined by the now freely rotating dipoles.  The subsequent slow decrease in  is a 

consequence of the thermal motion of particles. In other cases, the behaviour may be more complicated, 

in which  versus T has been plotted for H2s. the melting point of H2S is 187.70K. in this case, the dipoles 

are apparently “frozen in” at temperature below 103.50K;at this temperature the structure changes in such 

a manner that the dipolar groups become mobile; as the temperature is further increased, the dielectric 

constant decreases as a result of increased thermal motion. The other changes evidently affect essentially 

the density of the material, i.e., N is reduced at these transition points.
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           FERROELECTRIC   MATERIALS 

4.1 Introduction 

 When the centre of a positive charge does not coincide with the centre of 

negative charge in a primitive cell, the primitive cell possesses an electric dipole 

moment even in the absence of applied electric field. Thus the crystal as a whole has a 

polarization implying that it is spontaneously polarized The shifting of positive charge 

from the centre of negative charge is exhibited in the lack of centre of symmetry in the 

crystal.  Out of 32 crystal point groups, 21 point groups do not have a centre of  

symmetry.  Except one point group, which is highly symmetric, the rest 20 point groups 

represent an extremely useful class of materials, known as piezoelectrics. 

Piezoelectrics:  Piezoelectric crystals show electric polarization on being 

externally strained and conversely, show deformation when placed under the influence 

of an applied electric field.   If the crystal belongs to any one of the above 20 point 

groups, it can be predicted that the crystal would be piezoelectric.  Ammonium 

phosphate, quartz, PZT (Lead Zirconate Titanate) are some examples of piezoelectric 

crystals. 

Pyroelectrics:  Among the class of 20 crystal point groups which lack centre of 

symmetry, 10 crystal point groups are spontaneously polarized.  These spontaneously 

polarized dielectric crystals are called pyroelectric crystals. The polarization in 

pyroelectric crystals is usually masked by surface charges that accumulate on the 

surface from the atmosphere and subsequently neutralize the layers of ions.  But, when 
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the temperature of the crystal is altered, the masking is no longer complete as the 

polarization changes because of thermal expansion or contraction of the crystal.  Owing 

to the thermal effect on polarization, these crystals are named pyroelectric (pyro means 

fire).  The thermal effect accompanying deformation thus supports the piezoelectric 

property of the crystals. This only confirms that all pyroelectric crystals are piezoelectric, 

though converse is not true.   

 While maintaining the crystalline properties, the symmetry operations of a 

pyroelectric crystal must preserve the direction of polarization P.  This imposes severe 

restrictions on the point group symmetries as a result of which only 10 point groups are 

found to meet the conditions of pyroelectric crystals.  The rotation is allowed about only 

one axis that is parallel to P and there cannot exist mirror planes perpendicular to this 

axis.  The structural scrutiny of crystal groups reveals that only the following point 

groups meet the restrictions of pyroelectric crystals: 

 Cn, Cnv (n =2,3,4,6), C1 and C1h 

Thus the pyroelectric property too, like piezoelectricity, is solely determined by the 

symmetry properties of crystals. 

Ferroelectrics: Ferroelectric crystals have additional property that the 

polarization in them can be changed and even reversed by an external electric field.  On 

the other hand, this is not possible in pyroelectrics even with the maximum electric field 

that may be applied without causing electrical breakdown.  The additional feature of 

ferroelectrics that distinguishes them as a special class of pyroelectrics does not follow 
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from the characteristics of crystal structure.  It is established only on the basis of 

dielectric measurement.   

Furthermore, the additional feature of ferroelectrics mentioned above converts 

the usual linear relationship between polarization and applied electric field into a 

hysteresis loop. Since the dielectric behaviour of these materials is in many respects 

analogous to the magnetic behaviour of ferromagnetic materials, they are called 

ferroelectric solids, or ferroelectrics.  The ferroelectric behaviour is observed only below 

a certain temperature, called the Curie point, Tc.  A ferroelectric is spontaneously 

polarized, i.e., it is polarized in the absence of external field; the direction of the 

spontaneous polarization may be altered under influence of an applied electric field.  In 

general, the direction of spontaneous polarization is not the same throughout a 

macroscopic crystal.  Rather, the crystal consists of a number of  domains; within each 

domain the polarization has a specific direction, but this direction varies from one 

domain to another.    

4.2. Representative crystal types of ferroelectrics 

In general the ferroelectric crystals may be broadly classified into four representative 

groups such as i) Ilmenites and Perovskites, ii) KDP type iii) TGS type and iv) Rochelle 

salt. The table gives the Curie point Tc and the spontaneous polarization Ps for a number 

of common ferroelectric crystals. The electric susceptibility  in the Para electric phase 

is related to temperature by the Curie- Weiss law:      = 

cTT

C


  

where C is the Curie constant. 
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 The ferroelectric crystals are also distinguished on the basis of oscillatory nature 

of the atomic displacements that destroy the ferroelectric dipole order above the Curie 

temperature. In the ferroelectric phase of some crystals, the atomic displacements can 

be viewed as oscillations about a polar site. In the paraelectric phase these oscillations 

take place about a non-polar site. The phase transition that brings about this 

transformation in the nature of oscillations is called a Displacive phase transition. These 

crystals are accordingly identified as Displacive type. The well-known examples of this 

class are ionic crystals with ilmenite and perovskite structures. The GeTe is the simplest 

ferroelectric crystal having the ilmenite structure (i.e., NaCl structure) and BaTiO3 is the 

representative crystal of perovskites. 

         There is another very interesting class of crystals in whose non-ferroelectric state 

the potential energy function around certain atomic sites is double-well or multiple-well 

shaped. On the transition to the ferroelectric state the atomic displacements about 

those sites are executed as oscillations in an ordered subset of the referred potential 

wells. It involves an order-disorder type of phase transition. Common examples of these 

crystals, classified as order-disorder type, are some  

hydrogen bonded solids, namely KDP type crystals. The replacement of hydrogen by 

deuterium in KDP type crystals raises the Curie point in an amazing proportion. Though 

the increase in the molecular weight is less than 2 percent, the Tc rises from 123K to 

213K in the deuterated KDP and from 96K to 162K in KD2AsO4.  
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 For specific description, Rochelle salt and BaTiO3 are chosen as the two 

representative compounds of ferroelectrics whose properties are uniquely different. 

1). Rochelle Salt 

The first solid which was recognized to exhibit ferroelectric properties is Rochelle salt, 

the sodium-potassium salt of tartaric acid; it has the chemical formula NaKC4H4O6.4H2O.  

It was first prepared in 1672 by a pharmacist Seignette who lived in Rochelle. It 

represents the tartaric group of salts whose other well known member are lithium 

ammonium tartrate and lithium tantalum tartrate. The most noteworthy characteristic 

of Rochelle salt is that it is ferroelectric between two temperatures (255K and 296K). On 

account of its two transition temperatures, Rochelle salt becomes a special and peculiar 

example of ferroelectrics.  

 The crystal structure of Rochelle salt is somewhat complex. Above 296K and 

bellow 255K the structure is orthorhombic (three mutually perpendicular axes a,b,c). It 

has a monoclinic symmetry in the ferroelectric phase such that the angle (between the 

c- and a- axes) differs from 900 and the spontaneous polarization is along the original 

orthorhombic a-axis. Thus Rochelle salt has only one polar axis and two possible 

polarization directions (+ and – along the a- axis).   

 Halblutzel has measured the dielectric constant of Rochelle salt along the three 

crystal axes over the whole useful range of temperatures. The Curie-Weiss law applies 

above 296 K and below  
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255 K. With the help of the experimental data it is easy to confirm that the two regions 

have different values of Curie constants. The dielectric constant measured along the 

polar axis a peaks at both transition temperatures, assuming a value as high as 4000.  

2). BaTiO3 

The BaTiO3 is the most important and most completely investigated 

representative of the perovskites type ferroelectrics. In the non-ferroelectric state (i.e. 

above 393 K). The Ba2+ ions are positioned at the corners, O2- ions at the centre of the 

faces and the Ti4+ ion is located at the centre of the cube. It has an arrangement of 

highly polarizable oxygen ions in the form of an octahedron with a small titanium ion at 

the centre 

 The curves clearly indicate that there are three ferroelectric phases of crystal  

_____________________________________________________________ 

Temperature  Direction of Ps   Crystalline symmetry 

_range_______________________________________________________                   

278-393 K    [001]     Tetragonal  

193-278 K    [011]              Orthorhombic  

   < 193 K    [111]     Rhombohedral  

 

The dipole moment p can alternatively be estimated by multiplying Ps  by the unit 

cell volume. Treating the unit cell as a simple cube of edge 4 A0 even in the ferroelectric 

state, we get p = 0.3(4 x 10-10)3 = 1.92 x 10-29 C m. Thus we find this value agrees very 
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well with that obtained on the basis of the observed deformation of the unit cell. The 

order of magnitude gives a measure of the ferroelectric effect in BaTiO3.The effect, 

however, is fairly large in some other perovskites (e.g. LiNbO3). 

 The Ps along the [001] direction, warrants our further attention. This 

implies that we must multiply by 2 and 3 to obtain the actual values in the regions 

193 K < T < 278 K and T<193K, respectively, because the direction of Ps in these regions 

is along the [011] and [111] directions, respectively. It is then quite interesting to note 

that spontaneous polarization (same as the saturation polarization) remains almost 

constant below 300K. 

4.3. Theory of the ferroelectric displacive transitions 

The theory that gives a good account of transitions in perovskites type crystals merits a 

separate treatment on account of having stood the test of vast experimental data. 

These crystals generally undergo a displacive transition at the Curie point. We can 

follow two approaches for finding interpretation to a displacive transition. One 

approach is the polarization catastrophe and the other one is the soft mode approach.   

The polarization catastrophe refers to an unusual situation in which the 

polarization becomes infinitely large. In this condition the force exerted by the local 

electric field is greater than the elastic restoring force. This produces an asymmetric 

shift in the positions of positive and negative ions. The shift is, however, limited to a 

finite displacement by the anharmonic restoring forces.   
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In the soft mode approach a transverse optical (TO) mode is frozen, i.e. its 

frequency vanishes at some point in the Brillouin zone below the Curie temperature. 

This TO mode is known as a soft mode. When T = 0, the crystal becomes unstable 

because of the absence of an effective restoring force. 

Polarization Catastrophe 

 The Clausius-Mossotti relation can be rearranged in the form  

)(3

)(3
1

0 eeii

eeii

NN

NN









        

where  

 Ni and Ne are the density of polarizable ion pairs and electrons, respectively and  

 αi and αe are the ionic and electronic polarizabilities, respectively. 

the dielectric constant becomes infinite , giving the state of polarization catastrophe. 

Further,  

  P = (Niαi + Neαe) Eloc 

    = (Niαi + Neαe) 









03

P
E       

 

for a cubic crystal  ( using Lorentz expression for Eloc). 

 If E = 0,  

 















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But, when the polarization catastrophe occurs, the quantity within the brackets equals 

zero 

This requires that  

  P  0         

The order to understand the above situation, let us consider a highly polarizable ionic 

crystal of cubic symmetry.  Let α be the total polarizability and p the dipole moment of 

an ion pair.  Let us assume that some transient stray field starts polarizing the ion pairs.  

The ion pairs will keep on polarizing until some resistance develops to stop the process.  

The resistance that finally stops the process of polarization exists in the form of 

anharmonic restoring forces.  The dipole moment of a single ion pair with ion separation 

x is 

   P = q.x = α Eloc = 








q

F
      

where F is the restoring force that tends to bring the positive and negative ions together 

and q is the charge on each ion. 

The work required to create N such dipoles in the unit volume of the crystal is 

 E1 = N  dxF.  =  dxx
Nq

.
2


 = 

2

2Np
   

   = 
2

2

N

P
 

On the other hand, the energy density associated with the electrical displacement due 

to Eloc is 
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 E2 =  Eloc. dP 

  =  











03

P
E . dP 

  =  dPE
P

.
6 0

2


       

since E1 is set against E2, the net energy density of a polarized dielectric is 

 

 E2 – E1 = 








 dPE

N

N

P
.1

32 0

2






     

This shows that even when E = 0, E2>E1, provided that 

  Nα 30       

The above condition in a general case is written in the form 

  
j

jjN  30         

where Nj stands for the density of the j th type of particles (ions/electrons) in the crystal 

and αj denotes the polarizability of a single particle of this type. 

  
j

jjN   ≡  Ni Ai + Ne αe      

the energy of the crystal becomes smaller in the presence of induced dipoles.  The 

minimum value of 
j

jjN   for which the ferroelectricity would occur is 30.  In any real 

ferroelectric crystal the situation that exactly corresponds to the polarization 
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catastrophe is not found.  However, a small deviation in the value of 
j

jjN  from 30 

changes the value of  by a large amount.   

If we express 
j

jjN   = 30-3β 

with β<<1 we get 

    


1
       

If we assume that β is a linear function of temperature near the Curie point and given by 

   β = 


cTT 
     

 being a constant, then 

    
cTT 

1
     

The temperature dependence of  as a given by this relation is in excellent agreement 

with the observed behaviour in several perovskite crystals. 

Ferroelectricity in perovskite crystal is understood in view of the following remarks 

made in respect of barium titanate: 

1. The titanium ion motion. The barium ions situated at the cube corners leave 

a big void at the centre position.  Since titanium ion is smaller than barium 

ion, it is unable to fill the void and is free to rattle around in the void.  

Because the ionic polarizability is a measure of the ease of displacement, its 

value increased.   
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2. The non-cubic symmetry around oxygen ions.  Unlike the barium and 

titanium ions, the oxygen ions are in the non-cubic environment.  An oxygen 

ion has only two nearest neighbours in the form of titanium ions.  Because of 

this reason, Eloc is greater than the value given by Lorentz expression. 

A larger value of α predicted under point 1 leads to a smaller value of deformation 

energy E1 or the work required to create induced dipoles.  Similarly, a large value of Eloc 

as expected under point 2 implies that the dipolar attraction will be larger.  Thus, larger 

values of both α and Eloc are favourable to the onset of ferroelectricity. 

Soft mode approach 

As mentioned earlier, a ferroelectric state can be regarded as a frozen in TO phonon.  

According to Lyddane-Sachs-Teller relation (popularly known as LST relation) 

  
sLO

TO







 
2

2

     

where s is the static dielectric constant ,   is the dielectric constant   at optical 

frequencies, TO  and LO are the transverse and longitudinal optical mode frequencies.   

Above expression shows that as s increases, TO decreases; thus, in the case of an 

infinitely large s, which happens at the Curie point (Tc), TO may even be zero. In 

practice , s remains finite on approaching Tc.  The TO modes in question are called soft 

modes.  Such TO modes have surprisingly low frequencies.  For example, BaTiO3 has a 

soft mode of frequency 12 cm-1 at 297 K which is low for a TO mode.   
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We are not concerned here with LO phonons whose frequency is higher for the same 

value of the wave vector.  At the transition point Tc when TO approaches the zero 

value, the crystal becomes unstable and anharmonic elastic forces come into play.  In 

the presence of anharmonic forces, TO may show a temperature dependence of the 

form 

  2

TO  (T – Tc)    

On assuming that TO are temperature dependent, the LST relation 

  
s

1
 (T – Tc)     

Experimental results on several perovskite ferroelectrics strongly support that  a large 

static dielectric constant (s) is associated with a low TO phonon (the soft mode).  The 

temperature dependence of the energy of a low frequency TO phonon can be directly 

compared with that of  the inverse dielectric constant, for a KTaO3 crystal.  To have a 

clear idea, a schematic representation of the temperature dependence of s
-1, 2

TO and 

the saturation polarization Ps is shown in Fig. 1 
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4.4. Thermodynamic theory of the ferroelectric transition 

It is of interest to investigate the behaviour of a ferroelectric in the vicinity of its 

transition temperature Tc on the basis of thermodynamic arguments.  A thermodynamic 

theory has the advantage of being independents of any particular atomic model and 

thus leads to quite general conclusions.  Although such a theory does not provide the 

physical mechanism responsible for the ferroelectric properties of a given material, it 

does point to certain features one should look for in atomic models.   

 Consider a crystal which is ferroelectric for temperature T < Tc. Let x denote the 

relative displacement of the centres of the positive and negative ions in the crystal 

during a particular mode of vibration.  If F0 be the free energy of the unpolarized crystal, 

the free energy of the polarized crystal F is a function of the even powers of x.  That is, 

  F-Fo = 2 x2 + 4 x4 + 6 x6 + . . . .     

The constants  are functions of all other displacements and given by their thermal 

average values.  They are thus functions of temperature.  Since the electric polarization 

P is proportional to the displacement x, we have 

  F – Fo = 
2

1
2P2 + 

4

1
4P4 + 

6

1
6P6+ . . . .   

The constants  are the functions of temperature.  The numerical factors are introduced 

to facilitate calculations. 

 Consider first the paraelectric phase of the crystal, i.e., for T>Tc.  If a small 

electric field E is applied in the absence of any external pressure, the following 

thermodynamic relation holds good :   
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  dF = - SdT + E dP      

 

where S represents the entropy of the crystal. 

 For smaller E, P will also be smaller, and hence we retain only the first term in  

  E = 
TP

F












= 2P      

The electric susceptibility P in the paraelectric phase is given by  

 

  
P

1 = 








dP

dE

P

0 = 02    

using the Curie-Weiss law,  we have 

   

02 = 
C

TcT 
 

or    2 = C1(T-Tc)    

where C1 is another constant. 

shows that 2 increases linearly with increase in temperature.  As a result of this 

temperature dependence, 2 varies from positive values to negative values as the 

temperature is lowered from above Tc to below Tc. 

In the state of thermal equilibrium, the free energy is minimum which requires that 

   
TP

F












= 0 

 2P +  4P3 + 6P5 + . . . . . .=  0    
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The spontaneous polarization is bound to satisfy  and 

 Ps(2 + 4Ps2 + 6Ps4 + . . . .) = 0    

 We find that Ps = 0 is always a root of  For this solution the free energy has a 

minimum provided 2 is positive 












22

2


P

F
.  However, if 2, 4 and 6 are all positive 

and higher order terms are neglected, the condition is satisfied only for Ps = 0.  Thus, Ps 

=0 corresponds to the only minimum of the free energy and the paraelectric phase 

exists for the positive sign of 2, 4 and 6.   

 When the temperature is lowered through the transition point, 2 goes from 

positive do negative values while passing through 2 = 0 at the transition point.  There 

are two interesting situations that are identified in terms of the signs of 2, 4 and 6.  

These characterize two cases of particular interest namely second-order and first-order 

transitions.  

Second-order Transitions: If the coefficients 4, 6, . . . . are all positive and the value of  

2 varies from positive to negative as the temperature is lowered, the free energy 

changes as shown in Fig. 2.  Neglecting the terms beyond the second term in  are 

negligible, we get 

 
4

22




sP = 

4

1 )(



TTC c 
     

Hence Ps is a continuous function of temperature and falls continuously to zero at T = Tc  
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Cv 

T Tc 

Fig. 2 Temperature dependence of specific heat showing anomaly at 
a second-order phase transition 

It is useful to examine the spontaneously polarized state in terms of the 

frequency of normal modes.   

   2 or 2 = i
2(k) 

   i
2(k)  (T – Tc)    

where i(k) is the frequency of the normal mode i (a TO mode).  The transition takes 

place when i(k)  0.  This decrease in the mode frequency is called softening.  This 

indicates that the harmonic restoring forces are becoming very weak, permitting a large 

displacement which is limited solely by anharmonic forces.  When i2(k) or 2 is small 

and positive then the crystal lattice becomes soft and close to instability.  Below Tc, 2 is 

negative and hence also i
2(k); which implies that the unpolarized lattice is unstable and 

the crystal is in the spontaneously polarized ferroelectric state.   

 The heat capacity is given by  

  Cv = C1
2T/4    

The heat capacity falls discontinuously to zero at T =Tc (see Fig. 2).  But there is no 

latent heat at the transition.  Such a transition is called a second-order transition. 
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The transitions in Rochelle salt, KH3PO4 and LiTaO3 are some examples of the second-

order transition.  The transition to the superconducting state is the most popular 

example of this type of transition. 

First-order Transitions 

We have seen that when 2 is negative and 4 is positive, the transition is of the second-

order type.  We now consider a situation where 4 is negative and 6 is positive.  

Positive values of 6 are considered to restrain the free energy from going to minus 

infinity.  2 varies from positive to negative as the crystal is cooled through the Curie 

point.   

 The thermal equilibrium condition,     
P

F




 = 0, in the absence of the applied 

electric field gives 

 

  2Ps + 4Ps
3 + 6Ps

5 = 0   

which implies that either Ps = 0, or 

   2 + 4Ps
2 + 6Ps

4 = 0    

At T = Tc, the free energy in the paraelectric state is equal to that in the ferroelectric 

state, i.e., 

  F0(Tc) = F(Tc)     

 

  0 = 
2

1
2Ps

2 (Tc) + 
4

1
4Ps4 (Tc) + 

6

1
6Ps6(Tc) + ..  
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  2 + 4Ps
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4 (Tc) = 0    

  Ps
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At the transition point there are two minima of free energy with equal value; one at 

Ps(Tc) = 0 in the paraelectric phase and the other for the value of Ps(Tc).  Thus there is a 

jump in the value of Ps at Tc, meaning thereby that the spontaneous polarization (the 

order parameter) drops discontinuously to zero at T = Tc when a ferroelectric crystal is 

heated slowly.  Such transitions are called the first-order transitions.  The other 

important property of these transitions is that there is a latent heat at the transition.  A 

well known example of this type of transition is the upper transition in a BaTiO3 crystal. 

 Free energy as a function of polarisation as the temperature is varied near a first order 

phase transition. (b) Fall of the spontaneous polarisation below the transition point Tc in 

a first order phase transition.  

4.5 Ferroelectric Domains 

 When a ferroelectric is cooled from the paraelectric phase through the Curie 

temperature, the polarized phase may be nucleated at several points in the crystal.  
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These nuclei generally differ in the direction of polarization since there may be several 

equivalent crystallographic directions in which the spontaneous polarization can occur.  

In the case of BaTiO3, the spontaneous polarization may occur along any one of the 

three edges, giving six possible directions for the spontaneous polarization.  Thus, as the 

nuclei grow through the crystal in the ferroelectric crystal in the ferroelectric phase, 

they form several regions or domains differing in their direction of polarization.  The 

vector sum of these polarizations may not be always big enough to show up 

macroscopically. 

 Polarization is accompanied by some distortion of the unit cell and the domain 

walls are consequently in a state of strain; but the dimensional changes are relatively 

small.  Though the domain walls act as interruptions in the regularity of the crystal, they 

are not regarded as grain boundaries between different crystals.  A domain wall is 

instead, treated as a sub-grain within a single crystal.  As soon as a single nucleus of the 

polarized phase is formed, the polarized phase begins to grow much faster in the 

direction of polarization than in the transverse directions.  Because of this reason the 

growing domains are usually wedge-shaped.  This was revealed by optical birefringence 

studies on BaTiO3.   

 The ferroelectric domains are regarded as the electrical analogues of the 

ferromagnetic domains despite the fact that there are some interesting differences in 

their origin and growth.  When the electric field is applied on a ferroelectric crystal, the 

number and size of domains that are polarized in the field increase.  As a result of this 
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effect, upon the reversal of the field direction a hysteresis in the P versus E curve is 

observed.   

4.6 Antiferroelectricity 

Similar to ferroelectrics there is another group of solids, which has induced, ordered 

electric dipoles below a characteristic temperature but do not show spontaneous bulk 

polarization. In these crystals the neighbouring atomic lines are associated with 

antiparallel polarization because of which the bulk polarization of the crystal vanishes.  

Crystals exhibiting this property are called antiferroelectric crystals and the property is 

known as antiferroelectricity. The structural requirement for the ferroelectrics and 

antiferroelectric phases being common, a number of well-known antiferroelectric 

crystals are found to be isomorphous with some ferroelectrics. For example, ammonium 

dihydrogen phosphate (ADP) is isomorphous with potassium dihydrogen phosphate 

(KDP).   

Perovskite type crystals are known to be susceptible to several types of 

deformation with almost equal energy difference between them. In many of them the 

coupling through the oxygen octahedral causes adjacent lines of basic cells to be 

polarized in opposite directions. Below a certain temperature the resultant deformation 

is such that the total energy in the antiparallel arrangement of adjacent lines of dipoles 

is lower, when compared separately to that in state of fully parallel arrangement of 

dipoles and to that in the state with no induced dipoles. Lead Zirconate (PbZrO3) is a 

notable example of these perovskites. It shows to  
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Antiferroelectric phases, one each ferroelectric and paraelectric phases over 

different ranges of temperature.  
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PIEZOELECTRIC MATERILAS   

5.1 Introduction to Piezoelectric materials  

Piezoelectricity is the ability of certain dielectric crystals to produce a voltage 

when subjected to mechanical stress. The word is derived from the Greekpiezein, which 

means to squeeze or press. The effect is reversible; piezoelectric crystals, subject to an 

externally applied voltage, can change shape by a small amount. The effect is of the 

order of nanometres, but nevertheless finds useful applications such as the production 

and detection of sound, generation of high voltages, electronic frequency generation, 

and ultra fine focusing of optical assemblies. 

Pyroelectricity, the ability of certain mineral crystals to generate electrical charge 

when heated, was known of as early as the 18th century, and was named by David 

Brewster in 1824. In 1880, Pierre Curie and Jacques Curie brothers predicted and 

demonstrated piezoelectricity using tinfoil, glue, wire, magnets, and a jeweler's saw. 

They showed that crystals of tourmaline, quartz, topaz, canesugar, and Rochelle salt 

generate electrical polarization from mechanical stress. Quartz and Rochelle salt 

exhibited the most piezoelectricity. Twenty natural crystal classes exhibit direct 

piezoelectricity. 
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Piezoelectric materials 

In addition to the materials listed above, many other materials exhibit the 

piezoelectric effect, including quartz analogue crystals like berlinite (AlPO4) and gallium 

orthophosphate (GaPO4), ceramics with perovskite or tungsten-bronze structures 

(BaTiO3, KNbO3, LiNbO3, LiTaO3, BiFeO3, NaxWO3, Ba2NaNb5O5, Pb2KNb5O15). Polymer 

materials like rubber, wool, hair, wood fiber, and silk exhibit piezoelectricity to some 

extent. The polymer polyvinylidene fluoride, (-CH2-CF2-)n, exhibits piezoelectricity 

several times larger than quartz. Bone exhibits some piezoelectric properties: it has 

been hypothesized that this is part of the mechanism of bone remodelling in response 

to stress. 

Mechanism of piezoelectricity 

In a piezoelectric crystal, the positive and negative electrical charges are 

separated, but symmetrically distributed, so that the crystal overall is electrically 

neutral.When a stress is applied, this symmetry is disturbed, and the charge asymmetry 

generates a voltage. A 1 cm cube of quartz with 500 lbf (2 kN) of correctly applied force 

upon it, can produce 12,500 V of electricity. 

Piezoelectric materials also show the opposite effect, called converse 

piezoelectricity, where application of an electrical field creates mechanical stress 

(distortion) in the crystal. Because the charges inside the crystal are separated, the 

applied voltage affects different points within the crystal differently, resulting in the 
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distortion.The bending forces generated by converse piezoelectricity are extremely 

high, of the order of tens of meganewtons, and usually cannot be constrained. The only 

reason the force is usually not noticed is because it causes a displacement of the order 

of a few nanometres. 

Requirements for a crystal to show piezoelectricbehaviour were discussed in the 

previous Lesson.  We showed earlier that all ferroelectrics are piezoelectrics and that its 

converse is not true. For example, quartz is piezoelectric but it does not possess the 

ferroelectric property. 

 The foremost condition for a crystal to piezoelectric is the absence of the centre 

of symmetry. a simple two-dimensional ionic crystal with no centre of symmetry.It is 

evident that a compressive force Fdecreases the electric dipole moment(hence the 

polarization) and a tensile force F increases the same. This is essentially the piezoelectric 

effect. We must appreciate that the displayed crystal could well be a ferroelectric 

crystal. 

Next we take up another example to show how the symmetry of a non-

centrosymmetric crystal controls firstly the magnitude and direction of polarization 

when the crystal is stressed and secondly the crystal dimensions when the crystal is 

polarized.   Consider a molecule of hypothetical ionic solid which at equilibrium 

has three electric dipoles of equal magnitude distributed over 3600at an interval of 1200. 

The molecules belong to the point group 3m and its net dipole moment is zero. But if 

the molecule together with the crystal is stressed or compressed along a direction 

http://en.wikipedia.org/wiki/Nanometre
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parallel or antiparallel to one of the three directions of the dipole moment, a net dipole 

moment would appear. Similarly, a molecule may be distorted by an electric field 

applied along one of the three arrows. The electric field produces an elongation or 

contraction of the crystal along the field direction and a length change of opposite sign 

in the lateral direction. An applied field that is perpendicular to one of the three dipole 

directions in Fig. 1. finds itself perpendicular to a mirror plane of symmetry and, 

therefore, is rendered ineffective in changing the crystal dimensions.  

 Because of lack of centre of symmetry and complex structure of piezoelectrics, 

their electrical behaviour under strain or strain behaviour under an electric field is not 

isotropic in nature. Nevertheless, a simple picture of the phenomena can be presented 

in a schematic one-dimensional notation by the following equations: 

   P= d + 0 E :; e =   s + Ed    

where P is the polarization, the stress, d the piezoelectric strain constant, 0the 

permittivity of  free space, E the electrical field,  the dielectric susceptibility, e the 

strain and s the elastic compliance constant.  

In real  crystals, however, the tensile, compressional or shear strains produced by 

an electrical field may develop in different directions and depend on the crystal 

orientation and the field direction in view of this fact the piezoelectric strain constants, 

that form a third rank tensor, are defined as  

dik=










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where i  x,y,z  and k  xx,yy,zz, xy, yz, zx 

 

 

 

 

 

 

 

 

Depending on the application and the desired behaviour, a crystal is cut so as to 

have the parallel faces of the crystal in a specific orientation. An X-cut is defined as a 

section cut from the crystal such that the x-axis of the crystal is perpendicular to parallel 

crystal faces. In order to obtain certain desirable properties the crystals are sometimes 

given oblique cut that is cut at angles is different from 90 degrees with the principal 

axes. 

5.2 Electrostriction 

It is appropriate to discuss a more universal phenomenon of deformation in 

crystals that is caused by an applied electrical field. It refers to the deformation in ionic 

crystals and the effect is commonly known electrostriction.  

Electrostriction is a property of all electrical non-conductors, or dielectrics that 

produces a relatively slight change of shape, or mechanical deformation, under the 

P P 

(a) (c) (b) 

Fig. 1 (a) Directions of polarization (b) A vertical tension or a horizontal compression causing 
 (c) A vertical compression or a horizontal tension causing a net polarization 

P = 0 
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application of an electric field. Reversal of the electric field does not reverse the 

direction of the deformation.  

In the first approximation the deformation of piezoelectric crystal is proportional 

to applied electrical field and the stress induced polarization varies linearly with the 

strain produced. But in ionic crystals, which do not have to be necessarily piezoelectrics, 

the strain is much smaller and proportional to the square of electrical field. We can 

understand the origin of electrostriction by appreciating that dipoles created by the 

applied electrical field would interact with each other. The inline dipoles attract each 

other with a repulsive poles acting perpendicular to the direction of the polarization.  

Let p denote the moment of a dipole and r the separation between two inline 

dipoles. The value of the electric field caused by a dipole at its in-line neighbour may be 

written as  

   E = 
3

0

2

4

1

r

p


      

The energy of a dipole in the field U(r) and the corresponding attractive force F are 

related as 

   F = -
dr

rdU )(
 

and    Ur) = - p.E 

These relations yield 

   F = - 
4

2

0

6

4

1

r

p


      

Similarly, we can find that the repulsive force is given by 
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   F = 
4
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Since p = αE, the attractive force can be expressed as  

   F = - 

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 To a first approximation the strain or deformation u may be assumed to follow 

the Hooke’s law and then  

   u = - 
k

F
 

where k is the usual force constant in the direction of the in-line dipoles. The above 

relation, we get 

   U = 

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0
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Thus, there will occur a compression in the field direction and an extension 

perpendicular to the field direction.  The above treatment holds for permanent dipoles 

as well on account of the effective dipole moment being proportional to the electric 

field. 

5.3 Applications of piezoelectric crystals 

It may be recalled all ferroelectrics are piezoelectrics, though the conversion is 

not true.As a result, ferroelectric materials have been frequently used in many 

applications that are based on the principle of piezoelectricity. But, because of 

importance of properties such  
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as mechanical and thermal strength the use of certain piezoelectric crystals 

becomes inevitable.  

Piezoelectric crystals are used in numerous ways: 

High-voltage sources 

Direct piezoelectricity of some substances like quartz, as mentioned above, can 

generate thousands of volts (known as high-voltage differentials). 

 Probably the best-known application is the electric cigarette lighter: pressing the 

button squeezes an piezoelectric crystal, and the high voltage thus produced 

ignites the gas as the current jumps over a small spark gap. The portable 

electrical sparkers used to light gas grills or stoves work the same way.  

 A similar idea being researched by the Defense Advanced Research Projects 

Agency (DARPA)  in the USA in a project called Energy Harvesting, which includes 

an attempt to power battlefield equipment by piezoelectric generators 

embedded in soldiers' boots.  

 A piezoelectric transformer is a type of AC voltage multiplier. Unlike a 

conventional transformer, which uses magnetic coupling between input and 

output, the piezoelectric transformer uses acoustic coupling. An input voltage is 

applied across a short length of a bar of piezoceramic material such as PZT, 

creating an alternating stress in the bar by the inverse piezoelectric effect and 
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causing the whole bar to vibrate. The vibration frequency is chosen to be the 

resonant frequency of the block, typically in the 100 kilohertz to 1 megahertz 

range. A higher output voltage is then generated across another section of the 

bar by the piezoelectric effect. Step-up ratios of more than 1000:1 have been 

demonstrated. An extra feature of this transformer is that, by operating it above 

its resonant frequency, it can be made to appear as an inductive load, which is 

useful in circuits that require a controlled soft start.  

Sensors 

 To detect sound, e.g. piezoelectric microphones (sound waves bend the 

piezoelectric material, creating a changing voltage) and piezoelectric pickups for 

electrically amplified guitars.  

 Piezoelectric oscillators are used to convert mechanical pulses into electrical 

ones and vice versa. The crystal in these devices works as a transducer. The 

acoustic pulses are used in underwater search (sonars) and other applications. 

The acoustic pulses are generated by the piezoelectric transducers excited by 

electrical fields in almost all search cases. The generation of ultrasonic waves is 

invariably accomplished by exploiting the above principle. 

 Piezoelectric microbalances are used as very sensitive chemical and biological 

sensors.  
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 The piezoelectric effect in synthetic poly vinyliden fluoride (PVF2) is about five 

times stronger than that in quartz. Being flexible and easy to handle like 

ultrasonic transducers, the PVF2 films are frequently used in applications such as 

monitoring blood pressure and respiration. 

 Piezoelectric elements are used in electronic drum pads to detect the impact of 

the drummer's sticks.  

Actuators 

As very high voltages correspond to only tiny changes in the width of the crystal, this 

width can be changed with better-than-micrometer precision, making piezo crystals the 

most important tool for positioning objects with extreme accuracy. 

 Loudspeaker: Voltages are converted to mechanical movement of a piezoelectric 

polymer film.  

 Piezoelectric elements can be used in laser mirror alignment, where their ability 

to move a large mass (the mirror mount) over microscopic distances is exploited 

to electronically align some laser mirrors. By precisely controlling the distance 

between mirrors, the laser electronics can accurately maintain optical conditions 

inside the laser cavity to optimize the beam output.  
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 A related application is the acousto-optic modulator, a device that vibrates a 

mirror to give the light reflected off it a Doppler shift. This is useful for fine-

tuning a laser's frequency.  

 Atomic force microscopes and scanning tunneling microscopes employ converse 

piezoelectricity to keep the sensing needle close to the probe.  

Frequency standards 

 Quartz clocks employ a tuning fork made from quartz that uses a combination of 

both direct and converse piezoelectricity to generate a regularly timed series of 

electrical pulses that is used to mark time. The quartz crystal (like any elastic 

material) has a precisely defined natural frequency (caused by its shape and size) 

at which it prefers to oscillate, and this is used to stabilize the frequency of a 

periodic voltage applied to the crystal.  

 The same principle is critical in all radiotransmitters and receivers, and in 

computers where it creates a clock pulse. Both of these usually use a frequency 

multiplier to reach the megahertz and gigahertz ranges.  

 Crystals shaped to have a prescribed mechanical resonance frequency are used 

as narrow band electrical filters. Only those electrical signals whose frequency is 

coincidence with the mechanical vibrational frequency pass through the crystal 

and all other are rejected. 
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 The piezoelectric materials are used as delay lines. When an electrical signal is 

converted into an acoustic one to one and of a quartz rod. The signal passes 

along rod as an acoustic wave, travelling at velocity of sound. At the other end 

acoustic may converted into an electrical signal. The initial signal is thus delayed. 

Such an arrangement is often used in communication devices. 

Piezoelectric motors 

 Types of piezoelectric motor include the well-known travelling-wave motor used 

for auto-focus in reflex cameras, inchworm motors for linear motion, and 

rectangular four-quadrant motors with high power density (2.5 watt/cm³) and 

speed ranging from 10 nm/s to 800 mm/s. All these motors work on the same 

principle. Driven by dual orthogonal vibration modes with a phase shift of 90°, 

the contact point between two surfaces vibrates in an elliptical path, producing a 

frictional force between the surfaces. Usually, one surface is fixed causing the 

other to move. In most piezoelectric motors the piezoelectric crystal is excited by 

a sine wave signal at the resonant frequency of the motor. Using the resonance 

effect, a much lower voltage can be used to produce a high vibration amplitude. 

5.4    Applications of Piezoelectric materials 

 Piezoelectricity is the ability of certain dielectric crystals to produce a voltage 

when subjected to mechanical stress. 
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 Pierre Curie and Jacques Curie brothers predicted and demonstrated 

piezoelectricity in 1880. They showed that crystals of tourmaline, quartz, topaz, 

canesugar, and Rochelle salt generate electrical polarization from mechanical 

stress. 

 Piezoelectric materials also show the opposite effect, called converse 

piezoelectricity, where application of an electrical field creates mechanical stress 

(distortion) in the crystal. 

 The foremost condition for a crystal to piezoelectric is the absence of the centre 

of symmetry. 

 Depending on the application and the desired behaviour, a crystal is cut so as to 

have the parallel faces of the crystal in a specific orientation. An X-cut is defined 

as a section cut from the crystal such that the x-axis of the crystal is perpendicular 

to parallel crystal faces. 

 Electrostriction is a property of all dielectrics that produces a relatively slight 

change of shape, or mechanical deformation, under the application of an electric 

field.  

 Reversal of the electric field does not reverse the direction of the deformation.  

 The compression will occur in the field direction and an extension perpendicular 

to the field direction.   
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 Piezoelectric  crystals are used in high-voltage sources, sensors, actuators, 

frequency standards, piezoelectric motors etc.,  
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The present book deals with the studies on “Insulating materials”. 

 

 

Present book deals with advanced insulating materials, namely dielectrics, 

ferroelectrics and piezoelectric materials.  I believe that the information furnished in this 

book will improve the easy way of understanding the importance of insulating materials  

in solid state. The main purpose of the book is link to academicians, professional and 

students. 

I shall feel highly satisfied and amply rewarded in case the student community is 

benefitted to any substantial extent. 
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